Fol. Biol. 2020, 66, 81-84
https://doi.org/10.14712/fb2020066020081
Changes of Hippocampal Noradrenergic Capacity in Stress Condition
References
1. 1985) Α-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230, 1273-1276.
< , A. F. T., Goldman-Rakic, P. S. (https://doi.org/10.1126/science.2999977>
2. 2000) Biogenic amine transporters: regulation in flux. Curr. Opin. Neurobiol. 10, 328-336.
< , R. D., Bauman, A. (https://doi.org/10.1016/S0959-4388(00)00088-X>
3. Carlson, N. R. (1988) Foundations of Physiological Psychology, Boston, Allyn and Bacon, Inc.
4. 2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109.
< , H. (https://doi.org/10.1016/j.neuron.2004.08.028>
5. 2000 The vesicular neurotransmitter transporters: current perspectives and future prospects. FASEB J. 14, 2396-2400.
< , L. E. https://doi.org/10.1096/fj.00-0817rev>
6. 2002) The role of stress in neurodegenerative diseases and mental disorders. Neuro Endocrinol Lett. 23, 199-208.
, T., Stefano, G. B., Fricchione, G. L., Benson, H. (
7. 2011) Chronic ω-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behav. Brain Res. 219, 116.
< , A. C., Delattre, A. M., Almendra, R. G., Sonagli, M., Borges, C., Araujo, P., Andersen, M. L., Tufik, S., Lima, M. M. (https://doi.org/10.1016/j.bbr.2010.12.028>
8. 1999) Effect of repeated restraint stress on memory in different tasks. Braz. J. Med. Biol. Res. 32, 341-347.
< , G. D., Michalowski, M. B., Catelli, D. H., Xavier, M. H., Dalmaz, C. (https://doi.org/10.1590/S0100-879X1999000300015>
9. 2010) Subsequent stress increases gene expression of catecholamine synthetic enzymes in cardiac ventricles of chronic-stressed rats. Endocrine 37, 425-429.
< , L., Spasojevic, N., Dronjak, S. (https://doi.org/10.1007/s12020-010-9325-5>
10. 2013) Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats. An. Acad. Bras. Cienc. 85, 999-1012.
< , L., Stojiljković, V., Kasapović, J., Popović, N., Pajović, S. B, Dronjak, S. (https://doi.org/10.1590/S0001-37652013005000041>
11. Gavrilović, L., Stojiljković, V., Popović, N., Pejić, S., Todorović, A., Pavlović, I., Pajović, S. B. (2018) Stress in the spleen. The role of exercise and catecholaminergic system. In: Experimental Animal Models of Human Diseases: An Effective Therapeutic Strategy, ed. Ibeh B., pp. 238-310. In Tech, Rijeka, Croatia.
12. 2004a) Expression of BDNF and its receptors in the median eminence cells with sensitivity to stress. Endocrinology 135, 4737.
< , L., Arancibia, S., Alonso, G., Tapia-Arancibia, L. (https://doi.org/10.1210/en.2004-0616>
13. 2004b) A single brain-derived neurotrophic factor injection modifies hypothalamo-pituitaryadrenocortical axis activity in adult male rats. Mol. Cell. Neurosci. 27, 280.
< , L., Naert, G., Rage, F., Ixart, G., Arancibia, S., Tapia- Arancibia, L. (https://doi.org/10.1016/j.mcn.2004.07.002>
14. 2006) Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J. Neurosci. Res. 83, 497-507.
< , K. S. Han, P. L. (https://doi.org/10.1002/jnr.20754>
15. 2013) Protective effects of nizofenone administration on the cognitive impairments induced by chronic restraint stress in mice. Pharmacol. Biochem. Behav. 103, 474.
< , Y., Zhuang, X., Gou, L., Ling, X., Tian, X., Liu, L., Zheng, Y., Zhang, L., Yin, X. (https://doi.org/10.1016/j.pbb.2012.09.009>
16. 2006) Continuous i.c.v. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats. Neuroscience 139, 779.
< , G., Ixart, G., Tapia-Arancibia, L., Givalois, L. (https://doi.org/10.1016/j.neuroscience.2005.12.028>
17. 1993) Regulation of neuropeptide expression in cultured cerebral cortical neurons by brain-derived neurotrophic factor. J. Neurochem. 60, 772.
< , H., Bessho, Y., Carnahan, J., Nakanishi, S., Mizuno, K. (https://doi.org/10.1111/j.1471-4159.1993.tb03216.x>
18. 2017) Prefrontal catecholaminergic turnover and antioxidant defense system of chronically stressed rats. Folia Biologica (Krakow) 65, 43-54.
< , N, Pajović, SB, Stojiljković, V, Pejić, S, Todorović, A, Pavlović, I, Gavrilović, L. (https://doi.org/10.3409/fb65_1.43>
19. 1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res. 710, 11.
< , J. A., Boylan, C., Fritsche, M., Altar, C. A., Lindsay, R. M. (https://doi.org/10.1016/0006-8993(95)01289-3>
20. 1990) Determination of protein covalently bound to agarose supports using bicinchoninic acid. Anal. Biochem. 191, 343-346.
< , T. M. (https://doi.org/10.1016/0003-2697(90)90229-3>
21. 2010) Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell. Mol. Neurobiol. 30, 1459-1465.
< , A., Sollas A., Serova, L. I., Kvetnansky, R., Sabban, E. L. (https://doi.org/10.1007/s10571-010-9575-z>
22. 2014) A longitudinal study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat. Hippocampus 24, 1120.
< , Y. C., Montoya, I., Wong, A. S., Mathieu, A., Lissemore, J., Lagace, D. C., Wong, T. P. (https://doi.org/10.1002/hipo.22296>
23. 2014) Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol. Biochem. Behav. 120, 73.
< , Y., Kan, H., Yin, Y., Wu, W., Hu, W., Wang, M., Li, W., Li, W. (https://doi.org/10.1016/j.pbb.2014.02.012>