Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2020, 66, 91-103

https://doi.org/10.14712/fb2020066030091

Deletions of the Idh1, Eco1, Rom2, and Taf10 Genes Differently Control the Hyphal Growth, Drug Tolerance, and Virulence of Candida albicans

A. Hameed1,2, S. A. Hussain2,3, M. U. Ijaz4, Muhammad Umer5

1Clinical Research Center, Medical University of Bialystok, Białystok, Poland
2Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
3Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas, San Antonio, USA
4Key Laboratory of Meat Processing & Quality Control, College of Food Sciences, Nanjing Agriculture University, Jiangsu, P. R. China
5Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road, Islamabad, Pakistan

Received December 2018
Accepted August 2019

References

1. Bell, S. P., Labib, K. (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027-1067. <https://doi.org/10.1534/genetics.115.186452>
2. Brand, A., MacCallum, D. M., Brown, A. J. P., Gow, N. A. R., Odds, F. C. (1993) Ectopic expression of URA3 can influence the virulence Candida albicans. Genetics 134, 717-728.
3. Brands, A., Skibbens, R. V. (2005) Ctf7p/Eco1p exhibits acetyltransferase activity – but does it matter? Curr. Biol. 15, R50-R51. <https://doi.org/10.1016/j.cub.2004.12.052>
4. Clapham, D. E. (2007) Calcium signaling. Cell 131, 1047-2058. <https://doi.org/10.1016/j.cell.2007.11.028>
5. Cui, J., Kaandorp, J. A., Sloot, P. M. A., Lloyd, C. M., Filatov, M. V. (2009) Calcium homeostasis and signaling in yeast cells and cardiac myocytes. FEMS Yeast Res. 9, 1137-1147. <https://doi.org/10.1111/j.1567-1364.2009.00552.x>
6. Dungrawala, H., Hui, H., Wright, J., Abraham, L., Kasemsri, T., McDowell, A., Stilwell, J. Schneider, B. L. (2012). Identification of new cell size control genes in S. cerevisiae. Cell Div. 7, 24. <https://doi.org/10.1186/1747-1028-7-24>
7. Fu, Y., Rieg, G., Fonzi, W. A., Belanger, P. H., Edwards, J. E. Jr., Filler, S. J. (1998) Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect. Immun. 66, 1783-1786. <https://doi.org/10.1128/IAI.66.4.1783-1786.1998>
8. Han, Y., Luo, J., Ranish, J., Hahn, S. (2014) Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J. 33, 2534-2546. <https://doi.org/10.15252/embj.201488638>
9. Kenna, M. A., Skibbens, R. V. (2003) Mechanical link between cohesion establishment and DNA replication: Ctf7p/ Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol. Cell. Biol. 23, 2999-3007. <https://doi.org/10.1128/MCB.23.8.2999-3007.2003>
10. Lai, H., Chiou, J. G., Zhurikhina, A., Zyla, T. R., Tsygankov, D., Lew, D. J. (2018) Temporal regulation of morphogenetic events in Saccharomyces cerevisiae. Mol. Biol. Cell 29, 2069-2083. <https://doi.org/10.1091/mbc.E18-03-0188>
11. Lee, C. M., Nantel, A., Jiang, L., Whiteway, M., Shen, S. H. (2004) The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol. Microbiol. 51, 691-709. <https://doi.org/10.1111/j.1365-2958.2003.03879.x>
12. Lee, K. L., Buckley, H. R., Campbell, C. C. (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148-153. <https://doi.org/10.1080/00362177585190271>
13. Li, X., Ohmori, T., Irie, K., Kimura, Y., Suda, Y., Mizuno, T., Irie, K. (2016) Different regulations of ROM2 and LRG1 expression by Ccr4, Pop2, and Dhh1 in the Saccharomyces cerevisiae cell wall integrity pathway. mSphere 1, pii: e00250-16. <https://doi.org/10.1128/mSphere.00250-16>
14. Lin, A. P., Hakala, K. W., Weintraub, S. T., McAlister-Henn, L. (2008) Suppression of metabolic defects of yeast isocitrate dehydrogenase and aconitase mutants by loss of citrate synthase. Arch. Biochem. Biophys. 474, 205-212. <https://doi.org/10.1016/j.abb.2008.03.005>
15. Liu, S., Hou, Y., Liu, W., Lu, C., Wang, W., Sun, S. (2015) Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryot. Cell 14, 324-334. <https://doi.org/10.1128/EC.00271-14>
16. Liu, X., Zhang, X., Zhang, Z. (2010) Cu,Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae. FEBS Lett. 584, 1245-1250. <https://doi.org/10.1016/j.febslet.2010.02.039>
17. Lu, S., Goering, M., Gard, S., Xiong, B., McNairn, A. J., Jaspersen, S. L., Gerton, J. L. (2010) Eco1 is important for DNA damage repair in S. cerevisiae. Cell Cycle 9, 3315-3327.
18. Lu, Y., Kwintkiewicz, J., Liu, Y., Tech, K., Frady, L. N., Su, Y. T., Bautista, W., Moon, S. I., MacDonald, J., Ewend, M. G., Gilbert, M. R., Yang, C., Wu, J. (2017) Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Cancer Res. 77, 1709-1718. <https://doi.org/10.1158/0008-5472.CAN-16-2773>
19. Lyons, N. A., Morgan, D. O. (2011) Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol. Cell 42, 378-389. <https://doi.org/10.1016/j.molcel.2011.03.023>
20. Lyons, N. A., Fonslow, B. R., Diedrich, J. K., Yates, J. R., Morgan, D. O. (2013) Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat. Struct. Mol. Biol. 20, 194-201. <https://doi.org/10.1038/nsmb.2478>
21. Malic, S., Hill, K. E., Ralphs, J. R., Hayes A, Thomas, D. W., Potts, A. J., William, D. W. (2007) Characterization of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy. Oral Microbiol. Immunol. 22, 188-194. <https://doi.org/10.1111/j.1399-302X.2007.00344.x>
22. Min, K., Ichikawa, Y., Woolford, C. A., Mitchell, A. P. (2016) Candida albicans gene deletion with a transient CRISPR-Cas9 system. mSphere 1, pii: e00130-16. <https://doi.org/10.1128/mSphere.00130-16>
23. Odds, F. C., Brown, A. J., Gow, N. A. (2004) Candida albicans genome sequence: a platform for genomics in the absence of genetics. Genome Biol. 5, 230. <https://doi.org/10.1186/gb-2004-5-7-230>
24. Ovalle, R., Lim, S. T., Holder, B., Jue, C. K., Moore, C. W., Lipke, P. N. (1998) A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14, 1159-1166. <https://doi.org/10.1002/(SICI)1097-0061(19980930)14:13<1159::AID-YEA317>3.0.CO;2-3>
25. Ozaki, K., Tanakal, K., Imamura1, H., Hihara, T., Kameyama, T., Nonaka, H., Hiranol, H., Matsuura, Y., Yoshimi, T. (1996) Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 2196-2207. <https://doi.org/10.1002/j.1460-2075.1996.tb00573.x>
26. Park, S., Isaacson, R., Kim, H. T., Silver, P. A., Wagner, G. (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13, 995-1005. <https://doi.org/10.1016/j.str.2005.04.013>
27. Rosenwald, A. G., Arora, G., Ferrandino, R., Gerace, E. L., Mohammednetej, M., Nosair, W., Rattila, S., Subic, A. Z., Rolfes, R. (2016) Identification of genes in Candida glabrata conferring altered responses to caspofungin, a cell wall synthesis inhibitor. G3 (Bethesda) 6, 2893-2907. <https://doi.org/10.1534/g3.116.032490>
28. Samantaray, S., Neubauer, M., Helmschrott, C., Wagener, J. (2013) Role of the guanine nucleotide exchange factor Rom2 in cell wall integrity maintenance of Aspergillus fumigatus. Eukaryot. Cell 12, 288-298. <https://doi.org/10.1128/EC.00246-12>
29. Sandovsky-Losica, H., Chauhan, N., Calderone, R., Segal, E. (2006) Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Med. Mycol. 44, 329-334. <https://doi.org/10.1080/13693780500434701>
30. Sardi, O., Polaquini, C. R., Freires, I. A., Livia, C. (2019) Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion. J. Med. Microbiol. 66, 816-824. <https://doi.org/10.1099/jmm.0.000494>
31. Schmidt, A., Bickle, M., Beck, T., Hall, M. N. (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88, 531-542. <https://doi.org/10.1016/S0092-8674(00)81893-0>
32. Sinha, I., Poonia, P., Sawhney, S., Natarajan, K. (2017) Functional specialization of two paralogous TAF12 variants by their selective association with SAGA and TFIID transcriptional regulatory complexes. J. Biol. Chem. 292, 6047-6055. <https://doi.org/10.1074/jbc.C116.768549>
33. Southern, P., Horbul, J., Maher, D., Davis, D. A. (2008) C. albicans colonization of human mucosal surfaces. PLoS One 3, e2067. <https://doi.org/10.1371/journal.pone.0002067>
34. Tao, L., Zhang, Y., Fan, S., Nobile, C. J., Guan, G., Huang, G. (2017) Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genet. 13, e1006949. <https://doi.org/10.1371/journal.pgen.1006949>
35. Toth, A., Ciosk, R., Uhlmann, F., Galova, M., Schleiffer, A., Nasmyth, K. (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320-333. <https://doi.org/10.1101/gad.13.3.320>
36. Unal, E., Heidinger-Pauli, J. M., Koshland, D. (2007) DNA double-strand breaks trigger genome-wide sister chromatid cohesion through Eco1 (Ctf7). Science 317, 245-248. <https://doi.org/10.1126/science.1140637>
37. Unrean, P. (2017) Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery. Bioprocess Biosyst. Eng. 40, 611-623. <https://doi.org/10.1007/s00449-016-1725-3>
38. Vyas, V. K., Barrasa, M. I., Fink, G. R. (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv. 1, e1500248. <https://doi.org/10.1126/sciadv.1500248>
39. Xu, D., Jiang, B., Ketela, T., Lemieux, S., Veillette, K. (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog. 3, e92. <https://doi.org/10.1371/journal.ppat.0030092>
40. Yan, Y., Kang, B. (2014) The Regulatory Mechanisms of Tor Complex II Signaling Pathway in Actin Organization in Saccharomyces Cerevisiae. Dorrance Publishing, Pittsburgh, PA.
41. Yang, F., Zhang, L., Wakabayashi, H., Myers, J., Jiang, Y., Cao, Y., Jimenez-Ortigosa, C., Perlin, D. S., Rustchenko, E. (2017) Tolerance to caspofungin in Candida albicans is associated with at least three distinctive mechanisms that govern expression of FKS genes and cell wall remodeling. Antimicrob. Agents Chemother. 61, pii: e00071-17.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive