Fol. Biol. 2020, 66, 186-203
https://doi.org/10.14712/fb2020066050186
Exendin-4 Induces Cytotoxic Autophagy in Two Ovarian Cancer Cell Lines through Inhibition of Mtorc1 Mediated by Activation of AMPK and Suppression of Akt
References
1. , M., Mita, T., Azuma, K., Ebato, C., Goto, H., Nomiyama, T., Fujitani, Y., Hirose, T., Kawamori, R., Watada, H. (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59, 1030-1037.
<https://doi.org/10.2337/db09-1694>
2. , H., Li, H., Li, W., Gui, T., Yang, J., Cao, D., Shen, K. (2015) The PI3K/AKT/mTOR pathway is a potential predictor of distinct invasive and migratory capacities in human ovarian cancer cell lines. Oncotarget 6, 25520-25532.
<https://doi.org/10.18632/oncotarget.4550>
3. , L., Jaramillo, M. C., Zhang, Z., Zheng, Y., Yao, M., Zhang, D. D., Yi, X. (2015) Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol. Med. Rep. 11, 91-98.
<https://doi.org/10.3892/mmr.2014.2671>
4. , G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H., Johansen, T. (2005) p62/ SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603-614.
<https://doi.org/10.1083/jcb.200507002>
5. , M., Hu, Z., Liu, J., Gao, J., Liu, C., Liu, D., Tan, M., Zhang, D., Lin, B. (2014) Beclin 1 expression in ovarian tissues and its effects on ovarian cancer prognosis. Int. J. Mol. Sci. 15, 5292-5303.
<https://doi.org/10.3390/ijms15045292>
6. , E., Sebastião, I., Cardoso, S., Carvalho, C., Santos, M. S., Oliveira, C. R., Moreira, P. I., Duarte, A. I. (2018) Brain GLP-1/IGF-1 signaling and autophagy mediate exendin-4 protection against apoptosis in type 2 diabetic rats. Mol. Neurobiol. 55, 4030-4050.
7. , Y. T., Tsai, T. H., Yang, C. C., Sun, C. K., Chang, L. T., Chen, H. H., Chang, C. L., Sung, P. H., Zhen, Y. Y., Leu, S., Chang, H. W., Chen, Y. L., Yip, H. K. (2013) Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl. Med. 11, 270
<https://doi.org/10.1186/1479-5876-11-270>
8. , R. J. M., Valdes, Y. R., Shepherd, T. G., DiMattia, G. E. (2015) Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J. Ovarian Res. 8, 52.
<https://doi.org/10.1186/s13048-015-0182-y>
9. , B., Kahaly, M., Mayr, D., Schmoeckel, E., Niesler, B., Kolben, T., Burges, A., Mahner, S., Jeschke, U., Trillsch, F. (2019) Interaction of ERα and NRF2 impacts survival in ovarian cancer patients. Int. J. Mol. Sci. 20, 112.
<https://doi.org/10.3390/ijms20010112>
10. , Z., Liu, S., Wang, X., Dai, Y., Khaidakov, M., Romeo, F., Mehta, J. L. (2014) LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis. Can. J. Physiol. Pharmacol. 92, 524-530
<https://doi.org/10.1139/cjpp-2013-0420>
11. , A., Linares, J. F., Galvez, A. S., Wikenheiser, K., Flores, J. M., Diaz-Meco, M. T., Moscat, J. (2008) The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell 13, 343-354.
<https://doi.org/10.1016/j.ccr.2008.02.001>
12. Eid, R. A., Bin-Meferij, M. M., El-kott, A. F., Eleawa, S. M., Zaki, M. S. A., Al-Shraim, M., El-Sayed, F., Eldeen, M. A., Alkhateeb, M. A., Alharbi, S. A., Aldera, H., Khalil, M. A. (2020a) Exendin-4 protects against myocardial ischemiareperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK. J. Cardiovasc. Transl. Res. Epub ahead of print. PMID: 32239434.
<https://doi.org/10.1007/s12265-020-09984-5>
13. Eid, R. A., Khalil, M. A., Alkhateeb, M. A., Eleawa, S. M., Zaki, M. S. A., El-kott, A. F., Al-Shraim, M., El-Sayed, F., Eldeen, M. A., Bin-Meferij, M. M., Awaji, K. M. E., Shatoor, A. S. (2020b) Exendin-4 attenuates remodeling in the remote myocardium of rats after an acute myocardial infarction by activating β-arrestin-2, protein phosphatase 2A, and glycogen synthase kinase-3 and inhibiting β-catenin. Cardiovasc. Drugs Ther. Epub ahead of print. PMID: 32474680.
14. , M., Abdelli, S., Yang, J. Y., Cornu, M., Niederhauser, G., Favre, D., Widmann, C., Regazzi, R., Thorens, B., Waeber, G., Abderrahmani, A. (2008) Exendin-4 protects β-cells from interleukin-1β-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes 57, 1205-1215.
<https://doi.org/10.2337/db07-1214>
15. , G., Dodurga, Y., Seçme, M., Elmas, L. (2016) Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells. Tumor Biol. 37, 2647-2653.
<https://doi.org/10.1007/s13277-015-4104-9>
16. , W., Yu, S., Wang, L., He, M., Cao, X., Li, Y., Xiao, H. (2016) Exendin-4 inhibits growth and augments apoptosis of ovarian cancer cells. Mol. Cell. Endocrinol. 436, 240-249.
<https://doi.org/10.1016/j.mce.2016.07.032>
17. , K. M., Kirigiti, M., Secher, A., Paulsen, S. J., Buckingham, R., Pyke, C., Knudsen, L. B., Vrang, N., Grove, K. L. (2015) Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology 156, 255-267.
<https://doi.org/10.1210/en.2014-1675>
18. , J. J. (2007) The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409-1439.
<https://doi.org/10.1152/physrev.00034.2006>
19. , Y., Waguri, S., Sakamoto, A., Kouno, T., Nakada, K., Hino, O., Watanabe, S., Ando, J., Iwadate, M., Yamamoto, M., Lee, M. S., Tanaka, K., Komatsu, M. (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275-284.
<https://doi.org/10.1083/jcb.201102031>
20. , T., Ito, S., Tanimitsu, K., Udagawa, S., Oka, J. I. (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci. Res. 55, 352-360.
<https://doi.org/10.1016/j.neures.2006.04.008>
21. , C., Nomiyama, T., Komatsu, S., Kawanami, T., Tsutsumi, Y., Hamaguchi, Y., Horikawa, T., Yoshinaga, Y., Yamashita, S., Tanaka, T., Terawaki, Y., Tanabe, M., Nabeshima, K., Iwasaki, A., Yanase, T. (2017) Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation. Endocrinology 158, 4218-4232.
<https://doi.org/10.1210/en.2017-00461>
22. , E. F., Badi, R. M., Satti, H. H., Mostafa, D. G. (2020) Exendin-4 exhibits a tumour suppressor effect in SKOVR-3 and OVACR-3 ovarian cancer cells lines by the activation of SIRT1 and inhibition of NF-κB. Clin. Exp. Pharmacol. Physiol. 47, 1092-1102.
<https://doi.org/10.1111/1440-1681.13288>
23. , J. Y., Lim, D. M., Park, H. S., Moon, C. I, Choi, K. J., Lee, S. K., Baik, H. W., Park, K. Y., Kim, B. J. (2012) Exendin- 4 protects against sulfonylurea-induced β-cell apoptosis. J. Pharmacol. Sci. 118, 65-74.
<https://doi.org/10.1254/jphs.11072FP>
24. , G. C., Lima, K. G., Levorse, V., Haute, G. V., Gassen, R. B., Garcia, M. C., Pedrazza, L., Donadio, M. V. F., Luft, C., Oliveira, J. R. (2019) Exenatide induces autophagy and prevents the cell regrowth in HEPG2 cells. EXCLI J. 18, 540-548.
25. Lien, E. C., Lyssiotis, C. A., Cantley, L. C. (2016) Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. In: Recent Results in Cancer Research. Springer New York LLC, pp. 39-72.
26. , H., Wolf, I., Israeli, S., Haimsohn, M., Ferber, S., Karasik, A., Kaufman, B., Rubinek, T. (2012) The peptidehormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res. Treat. 132, 449-461.
<https://doi.org/10.1007/s10549-011-1585-0>
27. , E. Y., Ryan, K. M. (2012) Autophagy and cancer – issues we need to digest. J. Cell Sci. 125, 2349-2358.
28. , Y., Tong, L., Luo, Y., Li, X., Chen, G., Wang, Y. (2018) Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J. Cell. Biochem. 119, 6162–6172.
<https://doi.org/10.1002/jcb.26822>
29. , J., Blumenthal, G. M., Bernstein, W. B., Dennis, P. A. (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist. Updat. 11, 32-50.
<https://doi.org/10.1016/j.drup.2007.11.003>
30. , Z., Yang, H., Sutton, M. N., Yang, M., Clarke, C. H., Liao, W. S. L., Bast, R. C. (2014) ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ. 21, 1275-1289.
<https://doi.org/10.1038/cdd.2014.48>
31. , Z., Zang, M., Guo, W. (2010) AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Futur. Oncol. 6, 457-470.
<https://doi.org/10.2217/fon.09.174>
32. , S., Hisamatsu, T., Kimura, T. (2011) Targeting mTOR signaling pathway in ovarian cancer. Curr. Med. Chem. 18, 2960-2968.
<https://doi.org/10.2174/092986711796150450>
33. , A., Madeddu, C. (2012) Inflammation and ovarian cancer. Cytokine 58, 133-1487.
<https://doi.org/10.1016/j.cyto.2012.01.015>
34. , G., Obrist, F., Kroemer, G., Vitale, I., Galluzzi, L. (2014) Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 1, e29911.
<https://doi.org/10.4161/mco.29911>
35. , G., Niso-Santano, M., Baehrecke, E. H., Kroemer, G. (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81-94.
<https://doi.org/10.1038/nrm3735>
36. , M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M., Reggiori, F. (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435-1455.
<https://doi.org/10.1080/15548627.2018.1474314>
37. , N., Levine, B., Cuervo, A. M., Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
<https://doi.org/10.1038/nature06639>
38. , S. L., Medina, J. E., Taylor, M. M., Dinulescu, D. M. (2014) Targeting platinum resistant disease in ovarian cancer. Curr. Med. Chem. 21, 3009-3020.
<https://doi.org/10.2174/0929867321666140414102701>
39. , T., Kawanami, T., Irie, S., Hamaguchi, Y., Terawaki, Y., Murase, K., Tsutsumi, Y., Nagaishi, R., Tanabe, M., Morinaga, H., Tanaka, T., Mizoguchi, M., Nabeshima, K., Tanaka, M., Yanase, T. (2014) Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes 63, 3891-3905.
<https://doi.org/10.2337/db13-1169>
40. , S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Øvervatn, A., Bjørkøy, G., Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145.
<https://doi.org/10.1074/jbc.M702824200>
41. , C. W., Kim, H. W., Ko, S. H., Lim, J. H., Ryu, G. R., Chung, H. W., Han, S. W., Shin, S. J., Bang, B. K., Breyer, M. D., Chang, Y. S. (2007) Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227-1238.
<https://doi.org/10.1681/ASN.2006070778>
42. , C., Alabiso, O., Valente, G., Isidoro, C. (2012) Involvement of autophagy in ovarian cancer: a working hypothesis. J. Ovarian Res. 5, 22.
<https://doi.org/10.1186/1757-2215-5-22>
43. , C., Heller, R. S., Kirk, R. K., Ørskov, C., Reedtz-Runge, S., Kaastrup, P., Hvelplund, A., Bardram, L., Calatayud, D., Knudsen, L. B. (2014) GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280-1290.
<https://doi.org/10.1210/en.2013-1934>
44. , B., Sarkar, S., Davies, J. E., Futter, M., Garcia- Arencibia, M., Green-Thompson, Z. W., Jimenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., Luo, S., Massey, D. C. O., Menzies, F. M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F. H., Underwood, B. R., Winslow, A. R., Rubinsztein, D. C. (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383-1435.
<https://doi.org/10.1152/physrev.00030.2009>
45. , M., Outeiriño-Iglesias, V., Gil-Lozano, M., González-Matías, L. C., Mallo, F., Vigo, E. (2013) Pulmonary GLP-1 receptor increases at birth and exogenous GLP-1 receptor agonists augmented surfactant-protein levels in litters from normal and nitrofen-treated pregnant rats. Endocrinology 154, 1144-1155.
<https://doi.org/10.1210/en.2012-1786>
46. , S., Mells, J. E., Fu, P. P., Saxena, N. K., Anania, F. A. (2011) GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 6, e25269.
<https://doi.org/10.1371/journal.pone.0025269>
47. , Y., Li, D. D., Wang, L. L., Deng, R., Zhu, X. F. (2008) Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy 4, 1067-1068.
<https://doi.org/10.4161/auto.6827>
48. , G., Bobak, Y., Igumentseva, N., Titone, R., Morani, F., Stasyk, O., Isidoro, C. (2014) Single amino acid arginine deprivation triggers prosurvival autophagic response in ovarian carcinoma SKOV3. Biomed Res. Int. 2014, 505041
<https://doi.org/10.1155/2014/505041>
49. , Y., Liu, J. H., Jin, L., Sui, Y. X., Han, L. L., Huang, Y. (2015) Effect of autophagy-related beclin1 on sensitivity of cisplatin-resistant ovarian cancer cells to chemotherapeutic agents. Asian Pacific J. Cancer Prev. 16, 2785-2791.
<https://doi.org/10.7314/APJCP.2015.16.7.2785>
50. , W. X., Xu, T. M., Zhou, Z. L., Lv, X. J., Liu, J., Zhang, W. J., Cui, M. H. (2019) TRP14 promotes resistance to cisplatin by inducing autophagy in ovarian cancer. Oncol. Rep. 42, 1343-1354.
51. , J., Zhu, J., Ye, Y., Liu, Y., He, Y., Zhang, L., Tang, D., Qiao, C., Feng, X., Li, J., Kan, Y., Li, X., Jin, X., Kong, D. (2019) Inhibition LC3B can increase chemosensitivity of ovarian cancer cells. Cancer Cell Int. 19, 199.
<https://doi.org/10.1186/s12935-019-0921-z>
52. , T., Li, X., Zhang, J. (2019) mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 20, 755.
<https://doi.org/10.3390/ijms20030755>
53. , Y., Nomiyama, T., Kawanami, T., Hamaguchi, Y., Terawaki, Y., Tanaka, T., Murase, K., Motonaga, R., Tanabe, M., Yanase, T., Culig, Z. (2015) Combined treatment with exendin-4 and metformin attenuates prostate cancer growth. PLoS One 10, e0139709
<https://doi.org/10.1371/journal.pone.0139709>
54. , M. G. P., Brown, R., Rots, M. G. (2014) Nrf2, the master redox switch: the Achilles’ heel of ovarian cancer? Biochim. Biophys. Acta Rev. Cancer 1846, 494-509.
<https://doi.org/10.1016/j.bbcan.2014.09.004>
55. , R., Mathieu, C., Van Der Schueren, B. (2012) GLP1 and cancer: friend or foe? Endocr. Relat. Cancer 19, F77-F88.
<https://doi.org/10.1530/ERC-12-0111>
56. , S., Coward, J. I., Bast, R. C., Berchuck, A., Berek, J. S., Brenton, J. D., Coukos, G., Crum, C. C., Drapkin, R., Etemadmoghadam, D., Friedlander, M., Gabra, H., Kaye, S. B., Lord, C. J., Lengyel, E., Levine, D. A., McNeish, I. A., Menon, U., Mills, G. B., Nephew, K. P., Oza, A. M., Sood, A. K., Stronach, E. A., Walczak, H., Bowtell, D. D., Balkwill, F. R. (2011) Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719-725.
<https://doi.org/10.1038/nrc3144>
57. , K., Cho, G. (2019) Autophagy: an evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem. Funct. 37, 452-458.
<https://doi.org/10.1002/cbf.3427>
58. , Q., Sun, Y. Q., Zhang, J. (2012) Exendin-4, a glucagonlike peptide-1 receptor agonist, inhibits cell apoptosis induced by lipotoxicity in pancreatic β-cell line. Peptides 37, 18-24.
<https://doi.org/10.1016/j.peptides.2012.06.018>
59. , Y., Han, T., Wang, R., Wei, J., Peng, K., Lin, Q., Shao, G. (2018) LSD1 negatively regulates autophagy through the mTOR signaling pathway in ovarian cancer cells. Oncol. Rep. 40, 425-433.
60. , Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., Zhou, B. P. (2009) Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416-428.
<https://doi.org/10.1016/j.ccr.2009.03.016>
61. , Y., Shen, S., Verma, I. M. (2014) NF-κB, an active player in human cancers. Cancer Immunol. Res. 2, 823-830.
<https://doi.org/10.1158/2326-6066.CIR-14-0112>
62. , Y., Pang, X., Dong, M., Wen, F., Zhang, Y. (2013) Ghrelin inhibits ovarian epithelial carcinoma cell proliferation in vitro. Oncol. Rep. 30, 2063-2070.
<https://doi.org/10.3892/or.2013.2692>
63. , M. K. K., Misuan, N. (2019) Exendin-4 from Heloderma suspectum venom: from discovery to its latest application as type II diabetes combatant. Basic Clin. Pharmacol. Toxicol. 124, 513-527.
<https://doi.org/10.1111/bcpt.13169>
64. , P., Vihinen, H., Jokitalo, E., Eskelinen, E.-L. (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180-1185.
<https://doi.org/10.4161/auto.5.8.10274>
65. , C. W., Lee, S. H. (2018) The roles of autophagy in cancer. Int. J. Mol. Sci. 19, 3466.
<https://doi.org/10.3390/ijms19113466>
66. , M. M. H., Ngan, H. Y. S., Chan, D. W. (2016) Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim. Biophys. Sin. (Shanghai) 48, 301-317.
<https://doi.org/10.1093/abbs/gmv128>
67. , L., Yang, Y., Ma, T. T., Huang, C., Meng, X. M., Zhang, L., Li, J. (2015) Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy. Mol. Cell. Biochem. 402, 9-22.
<https://doi.org/10.1007/s11010-014-2298-6>
68. , L., Zhang, Y., Wang, W., Song, E., Fan, Y., Li, J., Wei, B. (2016) Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 7, 83476-83487.
<https://doi.org/10.18632/oncotarget.13080>
69. , Y., Xu, F., Liang, H., Cai, M., Wen, X., Li, X., Weng, J. (2016) Exenatide inhibits the growth of endometrial cancer Ishikawa xenografts in nude mice. Oncol. Rep. 35, 1340-1348.
<https://doi.org/10.3892/or.2015.4476>
70. , H., Yang, J., Xin, T., Li, D., Guo, J., Hu, S., Zhou, S., Zhang, T., Zhang, Y., Han, T., Chen, Y. (2014) Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/ Akt-Sfrp2 pathways. Free Radic. Biol. Med. 77, 363-375.
<https://doi.org/10.1016/j.freeradbiomed.2014.09.033>
71. , D., Zhou, Z. W., Yang, Y. J., Huang, L., Zhou, Z. L., He, S. M., He, Z. X., Zhou, S. F. (2015) Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/Akt/mTOR signaling pathway in human ovarian cancer cells. Int. J. Mol. Sci. 16, 27228-27251.
<https://doi.org/10.3390/ijms161126018>
72. , R., Efeyan, A., Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35.
<https://doi.org/10.1038/nrm3025>
73. , F. P., Cullen, K. S., Honkanen-Scott, M., Shaw, J. A. M., Lovat, P. E., Arden, A. C. (2017) Glucagon-like peptide 1 protects pancreatic β-cells from death by increasing autophagic flux and restoring lysosomal function. Diabetes 66, 1272-1285.
<https://doi.org/10.2337/db16-1009>
