Fol. Biol. 2021, 67, 49-61

https://doi.org/10.14712/fb2021067020049

Acylated Ghrelin Administration Inhibits Sleeve Gastrectomy - Induced Hippocampal Oxidative Stress, Apoptosis and Tau-Hyperphosphorylation by Activating the PI3K/Akt Pathway

Mohamed Darwesh Morsy1, M. A. Alsaleem2, M. S. Aboonq3, S. O. Bashir1, H. A. Al-Daher1

1Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
2Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
3Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia

Received May 2020
Accepted December 2020

References

1. Abizaid, A., Liu, Z. W., Andrews, Z. B., Shanabrough, M., Borok, E., Elsworth, J. D., Roth, R. H., Sleeman, M. W., Picciotto, M. R., Tschöp, M. H., Gao, X. B., Horvath, T. L. (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116, 3229-3239. <https://doi.org/10.1172/JCI29867>
2. Algahtani, H. A., Khan, A. S., Khan, M. A., Aldarmahi, A. A., Lodhi, Y. (2016) Neurological complications of bariatric surgery. Neurosciences 21, 241-245. <https://doi.org/10.17712/nsj.2016.3.20160039>
3. Ariyasu, H., Takaya, K., Tagami, T., Ogawa, Y., Hosoda, K., Akamizu, T., Suda, M., Koh, T., Natsui, K., Toyooka, S., Shirakami, G., Usui, T., Shimatsu, A., Doi, K., Hosoda, H., Kojima, M., Kangawa, K., Nakao, K. (2001) Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 86, 4753-4758. <https://doi.org/10.1210/jcem.86.10.7885>
4. Barkur, R. R., Bairy, L. K. (2015) Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development. Int. J. Occup. Environ. Health 28, 533-544. <https://doi.org/10.13075/ijomeh.1896.00283>
5. Bellar, D., Glickman, E. L., Judge, L. W., Gunstad, J. (2013) Serum ghrelin is associated with verbal learning and adiposity in a sample of healthy, fit older adults. BioMed Res. Int. 202757.
6. Berrout, L., Isokawa, M. (2012) Ghrelin promotes reorganization of dendritic spines in cultured rat hippocampal slices. Neurosci. Lett. 516, 280-284. <https://doi.org/10.1016/j.neulet.2012.04.009>
7. Bevins, R. A., Besheer, J. (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat. Protoc. 1, 1306-1311. <https://doi.org/10.1038/nprot.2006.205>
8. Bužga, M., Zavadilová, V., Holéczy, P., Švagera, Z., Švorc, P., Foltys, A., Zonča, P. (2014) Dietary intake and ghrelin and leptin changes after sleeve gastrectomy. Videosurg. Other Miniinvasive Tech. 9, 554-561. <https://doi.org/10.5114/wiitm.2014.45437>
9. Çalapkorur, S. Köksal E. (2017) The relation between laparoscopic sleeve gastrectomy and ghrelin. International Journal of Medical Research and Health Sciences 6, 29-35.
10. Carlini, V. P., Martini, A. C., Schiöth, H. B., Ruiz, R. D., Fiol de Cuneo, M., de Barioglio, S. R. (2008) Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration. Neuroscience 153, 929-934. <https://doi.org/10.1016/j.neuroscience.2008.03.015>
11. Carlini, V. P., Ghersi, M., Schiöth, H. B., de Barioglio, S. R. (2010) Ghrelin and memory: differential effects on acquisition and retrieval. Peptides 31, 1190-1193. <https://doi.org/10.1016/j.peptides.2010.02.021>
12. Chung, H., Kim, E., Lee, D. H., Seo, S., Ju, S., Lee, D., Kim, H., Park, S. (2007) Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 148, 148-159. <https://doi.org/10.1210/en.2006-0991>
13. Cowley, M. A., Smith, R. G., Diano, S., Tschöp, M., Pronchuk, N., Grove, K. L., Strasburger, C. J., Bidlingmaier, M., Esterman, M., Heiman, M. L., Garcia-Segura, L. M., Nillni, E. A., Mendez, P., Low, M. J., Sotonyi, P., Friedman, J. M., Liu, H., Pinto, S., Colmers, W. F., Cone, R. D., Horvath, T. L. (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649-661. <https://doi.org/10.1016/S0896-6273(03)00063-1>
14. Diano, S., Farr, S. A., Benoit, S. C., McNay, E. C., da Silva, I., Horvath, B., Gaskin, F. S., Nonaka, N., Jaeger, L. B., Banks, W. A., Morley, J. E., Pinto, S., Sherwin, R. S., Xu, L., Yamada, K. A., Sleeman, M. W., Tschöp, M. H., Horvath, T. L. (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381-388. <https://doi.org/10.1038/nn1656>
15. Gahete, M. D., Rubio, A., Córdoba-Chacón, J., Gracia-Navarro, F., Kineman, R. D., Avila, J., Luque, R. M., Castaño, J. P. (2010) Expression of the ghrelin and neurotensin systems is altered in the temporal lobe of Alzheimer’s disease patients. J. Alzheimer’s Dis. 22, 819-828. <https://doi.org/10.3233/JAD-2010-100873>
16. Gahete, M. D., Rincón-Fernández, D., Villa-Osaba, A., Hormaechea-Agulla, D., Ibáñez-Costa, A., Martínez-Fuentes, A. J., Gracia-Navarro, F., Castaño, J. P., Luque, R. M. (2013) Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J. Endocrinol. 220, R1-R24. <https://doi.org/10.1530/JOE-13-0391>
17. Giordano, V., Peluso, G., Iannuccelli, M., Benatti, P., Nicolai, R., Calvani, M. (2007) Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer’s dementia. Neurochem. Res. 32, 555–567. <https://doi.org/10.1007/s11064-006-9125-8>
18. Gomes, S., Martins, I., Fonseca, A. C., Oliveira, C. R., Resende, R., Pereira, C. M. (2014) Protective effect of leptin and ghrelin against toxicity induced by amyloid-β oligomers in a hypothalamic cell line. J. Neuroendocrinol. 26, 176-185. <https://doi.org/10.1111/jne.12138>
19. Haam, J., Yakel, J. L. (2017) Cholinergic modulation of the hippocampal region and memory function. J. Neurochem. 142, 111-121. <https://doi.org/10.1111/jnc.14052>
20. Hansson, C., Alvarez-Crespo, M., Taube, M., Skibicka, K. P., Schmidt, L., Karlsson-Lindahl, L., Egecioglu, E., Nissbrandt, H., Dickson, S. L. (2014) Influence of ghrelin on the central serotonergic signaling system in mice. NEPHBW 79, 498-505.
21. Howick, K., Griffin, B. T., Cryan, J. F., Schellekens, H. (2017) From belly to brain: targeting the ghrelin receptor in appetite and food intake regulation. Int. J. Mol. Sci. 18, 273. <https://doi.org/10.3390/ijms18020273>
22. Iqbal, K., Liu, F., Gong, C. X. (2014) Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem. Pharmacol. 88, 631-639. <https://doi.org/10.1016/j.bcp.2014.01.002>
23. Jeong, Y. O., Shin, S. J., Park, J. Y., Ku, B. K., Song, J. S., Kim, J. J., Jeon, S. G., Lee, S. M., Moon, M. (2018) MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer’s disease. Int. J. Mol. Sci. 19, 1800. <https://doi.org/10.3390/ijms19061800>
24. Kang, S., Moon, N. R., Kim, D. S., Kim, S. H., Park, S. (2015) Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid. Peptides 71, 84-93. <https://doi.org/10.1016/j.peptides.2015.07.005>
25. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656-660. <https://doi.org/10.1038/45230>
26. Kunath, N., van Groen, T., Allison, D. B., Kumar, A., Dozier- Sharpe, M., Kadish, I. (2015) Ghrelin agonist does not foster insulin resistance but improves cognition in an Alzheimer’s disease mouse model. Sci. Rep. 5, 11452. <https://doi.org/10.1038/srep11452>
27. Landrieu, I., Smet-Nocca, C., Amniai, L., Louis, J. V., Wieruszeski, J. M., Goris, J., Janssens, V., Lippens, G. (2011) Molecular implication of PP2A and Pin1 in the Alzheimer’s disease specific hyperphosphorylation of Tau. PloS One 6, e21521. <https://doi.org/10.1371/journal.pone.0021521>
28. Li, E., Chung, H., Kim, Y., Kim, D. H., Ryu, J. H., Sato, T., Kojima, M., Park, S. (2013) Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory. Endocr. J. 60, 781-789. <https://doi.org/10.1507/endocrj.EJ13-0008>
29. Martinou, J. C., Youle, R. J. (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92-101. <https://doi.org/10.1016/j.devcel.2011.06.017>
30. Moon, M., Cha, M. Y., Mook-Jung, I. (2014) Impaired hippocampal neurogenesis and its enhancement with ghrelin in 5XFAD mice. J. Alzheimer’s Dis. 41, 233-241. <https://doi.org/10.3233/JAD-132417>
31. Morris R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47-60. <https://doi.org/10.1016/0165-0270(84)90007-4>
32. Morsy M. D. (2020) Hemostatic effect of acylated ghrelin in control and sleeve gastrectomy-induced rats: mechanisms of action. Arch. Physiol. Biochem. 126, 31-40. <https://doi.org/10.1080/13813455.2018.1489849>
33. Patterson, Z. R., Ducharme, R., Anisman, H., Abizaid, A. (2010) Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice. Eur. J. Neurosci. 32, 632-639. <https://doi.org/10.1111/j.1460-9568.2010.07310.x>
34. Ponce-Lopez, T., Hong, E., Abascal-Díaz, M., Meneses, A. (2017) Role of GSK3β and PP2A on regulation of tau phosphorylation in hippocampus and memory impairment in ICV-STZ animal model of Alzheimer’s disease. Adv. Alzheimer. Dis. 13, 31.
35. Rankin, C. A., Sun, Q., Gamblin, T. C. (2007) Tau phosphorylation by GSK-3β promotes tangle-like filament morphology. Mol. Neurodegener. 2, 12. <https://doi.org/10.1186/1750-1326-2-12>
36. Rigamonti, A. E., Pincelli, A. I., Corrà, B., Viarengo, R., Bonomo, S. M., Galimberti, D., Scacchi, M., Scarpini, E., Cavagnini, F., Müller, E. E. (2002) Plasma ghrelin concentrations in elderly subjects: comparison with anorexic and obese patients. J. Endocrinol. 175, 1-5. <https://doi.org/10.1677/joe.0.175r001>
37. Santos, V. V., Stark, R., Rial, D., Silva, H. B., Bayliss, J. A., Lemus, M. B., Davies, J. S., Cunha, R. A., Prediger, R. D., Andrews, Z. B. (2017) Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1-40) administration in mice. J. Neuroendocrinol. 29, 1-11. <https://doi.org/10.1111/jne.12476>
38. Selkoe D. J. (2002) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741-766. <https://doi.org/10.1152/physrev.2001.81.2.741>
39. Seminara, R. S., Jeet, C., Biswas, S., Kanwal, B., Iftikhar, W., Sakibuzzaman, M., Rutkofsky, I. H. (2018) The neurocognitive effects of ghrelin-induced signalling on the hippocampus: a promising approach to Alzheimer’s disease. Cureus 10, e3285.
40. Shati, A. A., Alfaifi, M. Y. (2019) Trans-resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3K/Akt induced- inhibition of GSK3β. Neurochem. Res. 44, 357-373. <https://doi.org/10.1007/s11064-018-2683-8>
41. Stevenson, R. J., Francis, H. M. (2017) The hippocampus and the regulation of human food intake. Psychol. Bull. 143, 1011-1032. <https://doi.org/10.1037/bul0000109>
42. Stoyanova I. I. (2014) Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol. Dis. 72, 72-83. <https://doi.org/10.1016/j.nbd.2014.08.026>
43. Swomley, A. M., Förster, S., Keeney, J. T., Triplett, J., Zhang, Z., Sultana, R., Butterfield, D. A. (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim. Biophys. Acta 1842, 1248-1257. <https://doi.org/10.1016/j.bbadis.2013.09.015>
44. Tóth, K., László, K., Lukács, E., Lénárd, L. (2009) Intraamygdaloid microinjection of acylated-ghrelin influences passive avoidance learning. Behav. Brain Res. 202, 308-311. <https://doi.org/10.1016/j.bbr.2009.03.031>
45. Valentí, V., Martín, M., Ramírez, B., Gómez-Ambrosi, J., Rodríguez, A., Catalán, V. , Sara Becerril, S., Lancha, A., Fernández, S., Cienfuegos, J., Burrell, M., Frühbeck, G. (2011) Sleeve gastrectomy induces weight loss in diet-induced obese rats even if high-fat feeding is continued. Obes. Surg. 21, 14381443. <https://doi.org/10.1007/s11695-010-0277-x>
46. Weller, J., Budson, A. (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 7, 1161. <https://doi.org/10.12688/f1000research.14506.1>
47. Wu, A., Ying, Z., Gomez-Pinilla, F. (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur. J. Neurosci. 19, 1699-1707. <https://doi.org/10.1111/j.1460-9568.2004.03246.x>
48. Xiao, H., Wang, J., Yuan, L., Xiao, C., Wang, Y., Liu, X. (2013) Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signalling pathways. J. Agric. Food Chem. 61, 1509-1520. <https://doi.org/10.1021/jf3050268>
49. Yagi, T., Asakawa, A., Ueda, H., Miyawaki, S., Inui, A. (2013) The role of ghrelin in patients with functional dyspepsia and its potential clinical relevance (Review). Int. J. Mol. Med. 32, 523-531. <https://doi.org/10.3892/ijmm.2013.1418>
50. Zhang, R., Yang, G., Wang, Q., Guo, F., Wang, H. (2013) Acylated ghrelin protects hippocampal neurons in pilocarpine- induced seizures of immature rats by inhibiting cell apoptosis. Mol. Biol. Rep. 40, 51-58. <https://doi.org/10.1007/s11033-012-1993-1>
51. Zhao, R., Zhang, Z., Song, Y., Wang, D., Qi, J., Wen, S. (2011) Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1’s attenuation of β-amyloid-induced neurotoxicity and tau phosphorylation. J. Ethnopharmacol. 133, 1109-1116. <https://doi.org/10.1016/j.jep.2010.11.054>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive