Fol. Biol. 2021, 67, 62-69

https://doi.org/10.14712/fb2021067020062

Not Only Hypoxia- but Radiation-Induced Epithelial-Mesenchymal Transition Is Modulated by Hypoxia-Inducible Factor 1 in A549 Lung Cancer Cells

M. Sato1,2,3, Katsumi Hirose1,2,3, K. Ichise1, H. Yoshino4, T. Harada3, Y. Hatayama1, H. Kawaguchi1, M. Tanaka1, I. Fujioka1, Y. Takai2,3, M. Aoki1

1Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
2Department of Radiation Oncology, Southern Tohoku General Hospital, Yatsuyamada, Koriyama, Japan
3Southern Tohoku BNCT Research Center, Yatsuyamada, Koriyama, Japan
4Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hon-cho, Hirosaki, Japan

Received October 2020
Accepted June 2021

References

1. An, J., Liu, H., Magyar, C. E., Guo, Y., Veena, M. S., Srivatsan, E. S., Huang, J., Rettig, M. B. (2013) Hyperactivated JNK is a therapeutic target in pVHL-deficient renal cell carcinoma. Cancer Res. 73, 1374-1385. <https://doi.org/10.1158/0008-5472.CAN-12-2362>
2. Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., Bissell, M. J., Barcellos-Hoff, M. H. (2007) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Res. 67, 8662-8670. <https://doi.org/10.1158/0008-5472.CAN-07-1294>
3. Appelt, A. L., Vogelius, I. R., Ploen, J., Rafaelsen, S. R., Lindebjerg, J., Havelund, B. M., Bentzen, S. M., Jakobsen, A. (2014) Long-term results of a randomized trial in locally advanced rectal cancer: no benefit from adding a brachytherapy boost. Int. J. Radiat. Oncol. Biol. Phys. 90, 110-118. <https://doi.org/10.1016/j.ijrobp.2014.05.023>
4. Cai, J., Du, S., Wang, H., Xin, B., Wang, J., Shen, W., Wei, W., Guo, Z., Shen, X. (2017) Tenascin-C induces migration and invasion through JNK/c-Jun signalling in pancreatic cancer. Oncotarget 8, 74406-74422. <https://doi.org/10.18632/oncotarget.20160>
5. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., Keshert, E. (1998) Role of HIF- 1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490. <https://doi.org/10.1038/28867>
6. Cheng, Z. X., Sun, B., Wang, S. J., Gao, Y., Zhang, Y. M., Zhou, H. X., Jia, G., Wang, Y. W., Kong, R., Pan, S. H., Xue, D. B., Jiang, H. C., Bai, X. W. (2011) Nuclear factor- κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS One 6, e23752. <https://doi.org/10.1371/journal.pone.0023752>
7. Cho, K. H., Yu, S. L., Cho, D. Y., Park, C. G., Lee, H. Y. (2015) Breast cancer metastasis suppressor 1 (BRMS1) attenuates TGF-β1-induced breast cancer cell aggressiveness through downregulating HIF-1α expression. BMC Cancer 15, 829. <https://doi.org/10.1186/s12885-015-1864-y>
8. Desai, S., Laskar, S., Pandey, B. N. (2013) Autocrine IL-8 and VEGF mediate epithelial-mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells. Cell Signal. 25, 1780-1791. <https://doi.org/10.1016/j.cellsig.2013.05.025>
9. El Guerrab, A., Cayre, A., Kwiatkowski, F., Privat, M., Rossignol, J. M., Rossignol, F., Penault-Llorca, F., Bignon, Y. J. (2017) Quantification of hypoxia-related gene expression as a potential approach for clinical outcome prediction in breast cancer. PLoS One 12, e0175960. <https://doi.org/10.1371/journal.pone.0175960>
10. Harada, H., Inoue, M., Itasaka, S., Hirota, K., Morinibu, A., Shinomiya, K., Zeng, L., Ou, G., Zhu, Y., Yoshimura, M., McKenna, W. G., Muschel, R. J., Hiraoka, M. (2012) Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat. Commun. 3, 783. <https://doi.org/10.1038/ncomms1786>
11. Hung, S. P., Yang, M. H., Tseng, K. F., Lee, O. K. (2013) Hypoxia- induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant. 22, 1869-1882. <https://doi.org/10.3727/096368912X657954>
12. Kang, N., Choi, S. Y., Kim, B. N., Yeo, C. D., Park, C. K., Kim, Y. K., Kim, T. J., Lee, S. B., Lee, S. H., Park, J. Y., Park, M. S., Yim, H. W, Kim, S. J. (2019) Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer 19, 148. <https://doi.org/10.1186/s12885-019-5360-7>
13. Nagarajan, D., Melo, T., Deng, Z., Almeida, C., Zhao, W. (2012) ERK/GSK3βa/Snail signaling mediates radiationinduced alveolar epithelial-to-mesenchymal transition. Free Radic. Biol. Med. 52, 983-992. <https://doi.org/10.1016/j.freeradbiomed.2011.11.024>
14. Nuzzo, G., Giuliante, F., Ardito, F., Vellone, M., Giovannini, I., Federico, B., Vecchio, F. M. (2008) Influence of surgical margin on type of recurrence after liver resection for colorectal metastases: a single-center experience. Surgery 143, 384-393. <https://doi.org/10.1016/j.surg.2007.09.038>
15. Poomthavorn, P., Wong, S. H., Higgins, S., Werther, G. A., Russo, V. C. (2009) Activation of a prometastatic gene expression program in hypoxic neuroblastoma cells. Endocr. Relat. Cancer 16, 991-1004. <https://doi.org/10.1677/ERC-08-0340>
16. Sato, M., Hirose, K., Kashiwakura, I., Aoki, M., Kawaguchi, H., Hatayama, Y., Akimoto, H., Narita, Y., Takai, Y. (2015) LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells. Mol. Med. Rep. 12, 3462-3468. <https://doi.org/10.3892/mmr.2015.3862>
17. Singh-Gupta, V., Zhang, H., Banerjee, S., Kong, D., Raffoul, J. J., Sarkar, F. H., Hillman, G. G. (2009) Radiation-induced HIF-1α cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int. J. Cancer 124, 1675-1684. <https://doi.org/10.1002/ijc.24015>
18. Takeda, A., Kunieda, E., Ohashi, T., Aoki, Y., Koike, N., Takeda, T. (2011) Stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer and other primary cancers in comparison with primary lung cancer. Radiother. Oncol. 101, 255-259. <https://doi.org/10.1016/j.radonc.2011.05.033>
19. Yoshino, H., Kashiwakura, I. (2017) Involvement of reactive oxygen species in ionizing radiation-induced upregulation of cell surface Toll-like receptor 2 and 4 expression in human monocytic cells. J. Radiat. Res. 58, 626-635. <https://doi.org/10.1093/jrr/rrx011>
20. Zhai, G. G., Malhotra, R., Delaney, M., Latham, D., Nestler, U., Zhang, M., Mukherjee, N., Song, Q., Robe, P., Chakravarti, A. (2006) Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J. Neurooncol. 76, 227-237. <https://doi.org/10.1007/s11060-005-6499-4>
21. Zhang, W. J., Chen, C., Zhou, Z. H., Gao, S. T., Tee, T. J., Yang, L. Q., Xu, Y. Y., Pang, T. H., Xu, X. Y., Sun, Q., Feng, M., Wang, H., Lu, C. L., Wu, G. Z., Wu, S., Guan, W. X., Xu, G. F. (2017) Hypoxia-inducible factor-1α correlates with tumor-associated macrophages infiltration, influences survival of gastric cancer patients. J. Cancer 8, 1818-1825. <https://doi.org/10.7150/jca.19057>
22. Zhou, Y. C., Liu, J. Y., Li, J., Zhang, J., Xu, Y. Q., Zhang, H. W., Qiu, L. B., Ding, G. R., Su, X. M., Mei, S., Guo, G. Z. (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-β- mediated epithelial-mesenchymal transition. Int. J. Radiat. Oncol. Biol. Phys. 81, 1530-1537. <https://doi.org/10.1016/j.ijrobp.2011.06.1956>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive