Fol. Biol. 2021, 67, 70-75
https://doi.org/10.14712/fb2021067020070
    The Morphology of Cell Differentiation, Terminal Differentiation and Ageing Seems To Reflect the Same Process: a Short Note
References
1. Ahmad, S.I., ed. (2018) Aging: Exploring a Complex Phenomenon. CRC Press, Boca Raton, Fl.
            
        
        
    
        2. , R. C., Harley, C. B. (1995) Evidence for a critical telomere length in senescent human fibroblasts. Exp. Cell Res. 219, 130-136.
            <https://doi.org/10.1006/excr.1995.1213>
        
        
    
        3. , I., Dilao, R.., Parreira, L. (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational pattern. Blood 95, 1608-1615.
            <https://doi.org/10.1182/blood.V95.5.1608.005k32_1608_1615>
        
        
    
        4. , L. T. (1967) Effect of mass blood-transfusion on erythroid cell differentiation in anemic rabbit. II. Denucleation in early stage of erythroid cell specialization, with special reference to RNA- and hemoglobin synthesis. Acta Med. Okayama 21, 267-278.
            
        
        
    
        5. Bessis, M. (1973) Living Blood Cells and Their Ultrastructure. Springer, Berlin, Germany.
            
        
        
    
        6. , F. M., van Koningsbuggen, S., Navascues, J., Lamond. A. (2007) The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585.
            <https://doi.org/10.1038/nrm2184>
        
        
    
        7. , J. R. (2013) Blastic leukemias (AML): a biologist’s view. Cell Biochem. Biophys. 66, 13-22.
            <https://doi.org/10.1007/s12013-012-9392-8>
        
        
    
        8. Cline, M. J. (1975) The White Cell. Harward University Press, Cambridge, UK.
            
        
        
    
        9. , A. L., Jia, S. (2014) Noncoding RNAs and the borders of heterochromatin. Wiley Interdiscip. Rev. RNA 5, 835-847.
            <https://doi.org/10.1002/wrna.1249>
        
        
    
        10. Costa da, J. P. (2018) A synopsis on aging. In: Aging: Exploring a Complex Phenomenon, ed. Ahmad, S. I., pp. 3-22, CRC Press, Boca Raton, FL.
            
        
        
    
        11. , T., Cremer, C. (2005) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during 1950s to 1980. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from 1990s to the present. Eur. J. Histochem. 50, 223-372.
            
        
        
    
        12. , J. M. (2014). The role of senescent cells in ageing. Nature 509, 439-446.
            <https://doi.org/10.1038/nature13193>
        
        
    
        13. , M. W., Balabanov, S., Holyoake, T. L., Brummendorf, T. H. (2007) Concise review: Telomere biology in normal and leukemic hematopoietic stem cells. Stem Cells 25, 1853-1861.
            <https://doi.org/10.1634/stemcells.2007-0057>
        
        
    
        14. , E. M., Young, N. S. (2019) Aging and hematopoiesis. Clin. Geriatr. Med. 35, 285-293.
            <https://doi.org/10.1016/j.cger.2019.03.001>
        
        
    
        15. Hein, N., Sanij, E., Quin, J., Hannan, K. M., Ganley, A., Hannan, R. D. (2012) The nucleolus and ribosomal genes in aging and senescence. In: Senescence I, ed. Nagata, T., pp. 171-208, In Tech d.o.o., Rijeka, Croatia.
            
        
        
    
        16. , S. T., Scatzo, D., Alworth, S., Fushang, L., Palmer, S., Enver, T., James, T., Lee, J., Groudine, M. (2007) Coordinate gene regulation during hematopoiesis is related to genomic organization. PloS Biol. 5, e309.
            <https://doi.org/10.1371/journal.pbio.0050309>
        
        
    
        17. , S. J., Lee, C. C., Lai, H. J. (2006). The nucleolus: reviewing oldies to have new understandings. Cell Res. 16, 530-538.
            <https://doi.org/10.1038/sj.cr.7310070>
        
        
    
        18. , C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. (2013) The hallmarks of aging. Cell 153, 1194-1217.
            <https://doi.org/10.1016/j.cell.2013.05.039>
        
        
    
        19. Marquez, C. M. D., Verarde, M. C. (2018) Senescent cells as drivers of age-related diseases. In: Aging: Exploring a Complex Phenomenon, ed. Ahmad, S. I., pp. 305-334, CRC Press, Boca Raton, FL.
            
        
        
    
        20. , M., Nũnez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J., Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-16.
            <https://doi.org/10.1016/S0092-8674(03)00401-X>
        
        
    
        21. , T. (1998) The plurifunctional nucleolus. Nucleic Acids Res. 26, 381-387.
            <https://doi.org/10.1093/nar/26.17.3871>
        
        
    
        22. , M., Montanaro, L., Treré, D., Derenzini, M. (2019) The ribosome biogenesis – cancer connection. Cells 8, 55.
            <https://doi.org/10.3390/cells8010055>
        
        
    
        23. , J. L., Newman, A. B. (2013) Telomere length in epidemiology: a biomarker of aging, age related disease, both or neither? Epidemiol. Rev. 35, 112-131.
            <https://doi.org/10.1093/epirev/mxs008>
        
        
    
        24. , C. F., Kling, J. M. (1967) The mechanism of denucleation in circulating erytroblasts. J. Cell. Biol. 35, 217-345.
            <https://doi.org/10.1083/jcb.35.1.237>
        
        
    
        25. , K., Jirásková, I., Cermák, J. (1999a) Incidence of nucleoli in erythroblasts in patients suffering from refractory anemia of myelodysplastic syndrome. Eur. J. Haematol. 63, 332-336.
            <https://doi.org/10.1111/j.1600-0609.1999.tb01136.x>
        
        
    
        26. , K., Jirásková, I., Perlaky, L., Busch, H. (1999b) The silver reaction of nucleolar proteins in the main structural compartments of ring-shaped nucleoli in smear preparations. Acta Histochem. 101, 167-183.
            <https://doi.org/10.1016/S0065-1281(99)80016-6>
        
        
    
        27. , K. (2003). Are nucleoli participating in programmed cell death? J. Appl. Biomed. 1, 93-97.
            <https://doi.org/10.32725/jab.2003.014>
        
        
    
        28. , K., Grebenová, D., Jirásková, I., Doubek, M., Marinov, Y., Hrkal, Z. (2004) A note on the decreased number and loss of fibrillar centres in nucleoli of apoptotic HL-60 leukaemic granulocytic precursors produced by 5-aminolaevulinic acid-based photodynamic treatment. Folia Biol. (Praha) 50, 15-20.
            
        
        
    
        29. , K., Klamová, H., Pluskalová, M., Stőckbauer, P., Jirásková, I., Hrkal, Z. (2005) Intranucleolar translocation of AgNORs in early granulocytic precursors in chronic myeloid leukaemia and K 562 cells. Folia Biol. (Praha) 51, 89-92.
            
        
        
    
        30. , K., Klamová, H., Jirásková, I., Hrkal, Z. (2008) To the density and distribution of heterochromatin in differentiating, maturing and apoptotic cells represented by granulocytic, lymphocytic and erythrocytic precursors. Folia Biol. (Praha) 54, 8-11.
            
        
        
    
        31. , K., Mikulenková, D., Klamová, D. (2011) Heterochromatin density (condensation) during cell differentiation and maturation using the human granulocyte cell lineage of chronic myeloid leukaemia as a convenient model. Folia Biol. (Praha) 57, 216-211.
            
        
        
    
        32. , K. (2011) Editorial. The nucleolus through the years. J. Appl. Biomed. 9, 119-127.
            <https://doi.org/10.2478/v10136-011-0010-7>
        
        
    
        33. , K., Mikulenková, D., Hrkal, Z., Klamová, H. (2015) On the heterochromatin condensation state diversity in myeloblasts of chronic myelocytic and acute myeloblastic leukemias. Ann. Clin. Pathol. 3, 1056.
            
        
        
    
        34. , K., Klamová, H., Mikulenková, D. (2019) To the approximate size of the nuclear region occupied by nucleolar bodies during cell differentiation and maturation using the human leukemic granulocytic lineage as a convenient model. Physiol. Res. 68, 633-638.
            <https://doi.org/10.33549/physiolres.934045>
        
        
    
        35. , K., Klamová, H., Mikulenková, D. (2020a) Dominant nucleolus in the progenitor cell using human bone marrow erythroid and granulocytic cell lineages as a model. A morphological and cytochemical note. Folia Biol. (Praha) 66, 111-115.
            
        
        
    
        36. Smetana, K., Klamová, H., Mikulenková, H., Čermák, J. (2020b) To the morphological heterochromatin condensation state in granulocytic progenitors – myeloblasts – in patients suffering from the myelodysplastic syndrome and acute myeloblastic leukemia. Hematol. Med. Oncol.
            <https://doi.org/10.15761/HMO.1000199>
        
        
    
        37. , K., Jr., Dvořánková, B., Lacina, L. (2013) Phylogeny, regeneration, ageing and cancer: role of microenviroment and possibility of its therapeutic manipulation. Folia Biol. (Praha) 59, 207-216.
            
        
        
    
        38. Smetana, K., Jr., Dvořánková, B., Lacina, L., Szabo, P., Brož, P., Šedo, A. (2018) The prize of longevity. In: Aging: Exploring a Complex Phenomenon, ed. Ahmad, S. I., pp. 246-285, CRC Press, Boca Raton, FL.
            
        
        
    
        39. , E., Homáček, M., Kováčík, L., Mazel, T., Schröfel, A., Svidenská, S., Skalníková, M., Bartová, A., Cmarko, D., Raška, I. (2016). Reproduction of the FC/DFC units in nucleoli. Nucleus 7, 203-215.
            <https://doi.org/10.1080/19491034.2016.1157674>
        
        
    
        40. Wang, X., Zhang, H., Su, L., Zhanjun, L. (2018) The genetic program of aging. In: Aging: Exploring a Complex Phenomenon, ed. Ahmad, S. I., pp. 117-134, CRC Press, Boca Raton, FL.
            
        
        
    
        41. , K., Schöfer, Ch. (2016) Morphology of the nuclear transcription. Histochem. Cell Biol. 145, 343-358.
            <https://doi.org/10.1007/s00418-016-1412-0>
        
        
    
        42. , P., Florian, M. C. (2020) Acute myeloid leukemia: Aging and epigenetics. Cancers (Basel) 12, 103.
            <https://doi.org/10.3390/cancers12010103>
        
        
    
