Fol. Biol. 2021, 67, 76-81
https://doi.org/10.14712/fb2021067020076
Human Adrenocortical Carcinoma (NCI-H295R) Cell Line as an In Vitro Cell Culture Model for Assessing the Impact of Iron on Steroidogenesis
References
1. 2015) Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem. J. 466, 401-413.
< , K., Haller, E., Taran, N., Rockfield, S., Ruiz-Rivera, A., Nanjundan, M. (https://doi.org/10.1042/BJ20140878>
2. 2020) Copper affects steroidogenesis and viability of human adrenocortical carcinoma (NCIH295R) cell line in vitro. J. Environ. Sci. Health, Part A 55, 1070-1077.
< , J., Fialkova, V., Duranova, H., Kovacikova, E., Forgacs, Z., Gren, A., Massanyi, P., Lukac, N., Roychoudhury, S., Knazicka, Z. (https://doi.org/10.1080/10934529.2020.1769400>
3. 1995) Oxidation-reduction reactions of metal ions. Environ. Health Perspect. 103, 17-19.
, E. D. (
4. 2008) Iron deficiency anemia. Nutr. Clin. Pract. 23, 128-141.
< , S. F. (https://doi.org/10.1177/0884533608314536>
5. 2017) Overview of iron metabolism in health and disease. Hemodial. Int. 1, 6-20.
< , S., Babitt, J. L. (https://doi.org/10.1111/hdi.12542>
6. 2017) Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell Res. 1864, 399-430.
< , R., Arab, N. T. T., Greenwood, M. T. (https://doi.org/10.1016/j.bbamcr.2016.12.002>
7. 2012) Iron metabolism and the polycystic ovary syndrome. Trends Endocrinol. Metab. 23, 509-515.
< , H. F. (https://doi.org/10.1016/j.tem.2012.04.003>
8. 1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 50, 5488-5496.
, A. F., Oie, H. K., Shackleton, C. H., Chen, T. R., Triche, T. J., Myers, C. E., Chrousos, G. P., Brennan, M. F., Stein, C. A., La Rocca, R. V. (
9. 2016) Iron homeostasis in health and disease. Int. J. Mol. Sci. 17, 130.
< , R., Arosio, P. (https://doi.org/10.3390/ijms17010130>
10. 2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol. Appl. Pharmacol. 217, 114-124.
< , M., Newsted, J. L., Murphy, M. B., Higley, E. B., Jones, P. D., Wu, R. S. S., Giesy, J. P. (https://doi.org/10.1016/j.taap.2006.07.007>
11. 2017) Upregulation of transferrin receptor-I induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 39, 1010428317717655.
< , W., Thanan, R., Techasen, A., Namwat, N., Loilome, W., Intarawichian, P., Titapun, A., Yongvanit, P. (https://doi.org/10.1177/1010428317717655>
12. Kabata-Pendias, A., Mukherjee, A. B. (2007) Trace Elements from Soil to Human. e-Book, Springer-Verlag, Heidelberg, Germany.
13. 2013) Effects of mercury on the steroidogenesis of human adrenocarcinoma (NCI-H295R) cell line. J. Environ. Sci. Health A 48, 348-353.
< , Z., Lukac, N., Forgacs, Z., Tvrda, E., Lukacova, J., Slivkova, J., Binkowski, L., Massanyi, P. (https://doi.org/10.1080/10934529.2013.726908>
14. 2015) Endocrine disruptive effects of cadmium on steroidogenesis: human adrenocortical carcinoma cell line NCI-H295R as a cellular model for reproductive toxicity testing. J. Environ. Sci. Health A 50, 348-356.
< , Z., Forgacs, Z., Lukacova, J., Roychoudhury, S., Massanyi, P., Lukac, N. (https://doi.org/10.1080/10934529.2015.987520>
15. 2001) The roles of iron in health and disease. Mol. Aspects Med. 22, 1-87.
< , P. T., Heiskala, M., Peterson, P. A., Yang, Y. (https://doi.org/10.1016/S0098-2997(00)00006-6>
16. 1999) Dose-dependent increase of oxidative damage in the testes of rats subjected to acute iron overload. Arch. Biochem. Biophys. 372, 37-43.
< , F., Caligiuri, M., Roberti, M. F., Perazzo, J. C., Fraga, C. G. (https://doi.org/10.1006/abbi.1999.1476>
17. 2020) In vitro assessment of the impact of nickel on the viability and steroidogenesis in the human adrenocortical carcinoma (NCI-H295R) cell line. Physiol. Res. 69, 1-30.
, N., Forgacs, Z., Duranova, H., Jambor, T., Zemanova, J., Massanyi, P., Tombarkiewicz, B., Roychoudhury, S., Knazicka, Z. (
18. 2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antiox. Redox Signal. 10, 997-1030.
< , E. L., Iwasaki, K., Tsuji, Y. (https://doi.org/10.1089/ars.2007.1893>
19. 2012) Influence of chemical elements on mammalian spermatozoa. Folia Biol. (Praha) 58, 7-15.
, U., Kamiński, P., Łakota, P. (
20. 1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63.
< , T. (https://doi.org/10.1016/0022-1759(83)90303-4>
21. 2008) Systemic iron homeostasis and the iron-responsive element/ iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 28, 197-213.
< , M. U., Galy, B., Hentze, M. W. (https://doi.org/10.1146/annurev.nutr.28.061807.155521>
22. 1990) Toxic effect of heavy metals on cells isolated from the rat adrenal and testis. In Vitro Cell. Dev. Biol. 26, 24-28.
< , T. B., Liu W. K. (https://doi.org/10.1007/BF02624150>
23. 2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int. J. Mol. Sci. 20, 3283.
< , S., Norwitz, S. G., Norwitz, E. R. (https://doi.org/10.3390/ijms20133283>
24. OECD (2011) Test No. 456: H295R Steroidogenesis assay. In: OECD Guideline for the Testing of Chemicals, Section 4, OECD Publishing, Paris.
25. 2016) Acute iron overload leads to hypothalamic-pituitary- gonadal axis abnormalities in female rats. Toxicol. Lett. 240, 196-213.
< , E. M., Marques, V. B., de Nunes, D. O., Carneiro, M. T. W. D., Podratz, P. L., Merlo, E., dos Santos, L., Graceli, J. B. (https://doi.org/10.1016/j.toxlet.2015.10.027>
26. 2003) Interactions of xenobiotics with the steroid hormone biosynthesis pathway. Pure Appl. Chem. 75, 1957-1971.
< , T., van den Berg, M. (https://doi.org/10.1351/pac200375111957>
27. 2011) The role of iron in tumor cell proliferation. Clin. Transl. Oncol. 13, 71-76.
< , J. L. (https://doi.org/10.1007/s12094-011-0621-1>
28. 2015) Iron and copper in male reproduction: a double-edged sword. J. Assist. Reprod. Genet. 32, 3-16.
< , E., Peer, R., Sikka, S. C., Agarwal, A. (https://doi.org/10.1007/s10815-014-0344-7>
29. 2019) A short review of iron metabolism and pathophysiology of iron disorders. Medicines 6, 85.
< , A., Latunde-Dada, G. O. (https://doi.org/10.3390/medicines6030085>
30. 2011) Regulation of cellular iron metabolism. Biochem. J. 434, 365-381.
< , J., Pantopoulos, K. (https://doi.org/10.1042/BJ20101825>
31. 2019) Iron metabolism in cancer. Int. J. Mol. Sci. 20, 95.
< , Y., Yu, L., Ding, J., Chen, Y. (https://doi.org/10.3390/ijms20010095>
32. 2020) Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol. Cell 77, 645-655.
< , R. A., Yen, F. S., Nicholson, S. P. V., Alwaseem, H., Bayraktar, E. C., Alam, M., Timson, R. C., La K., Abu- Remaileh, M., Molina, H., Birsoy, K. (https://doi.org/10.1016/j.molcel.2020.01.003>
33. 2005) Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. Environ. Sci. Technol. 39, 2777-2785.
< , X., Yu, R. M. K., Jones, P. D., Lam, G. K. W., Newsted, J. L., Gracia, T., Hecker, M., Hilscherova, K., Sanderson, T., Wu, R. S., Giesy, J. P. (https://doi.org/10.1021/es048679k>