Fol. Biol. 2021, 67, 76-81

https://doi.org/10.14712/fb2021067020076

Human Adrenocortical Carcinoma (NCI-H295R) Cell Line as an In Vitro Cell Culture Model for Assessing the Impact of Iron on Steroidogenesis

Z. Kňažická1, Veronika Fialková2, H. Ďúranová2, J. Bilčíková2,3, E. Kováčiková2, M. Miškeje2, V. Valková2, Z. Forgács4, S. Roychoudhury5, P. Massányi6, N. Lukáč6

1Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
2AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovak Republic
3Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovak Republic
4Independent Researcher, Budapest, Hungary
5Department of Life Science and Bioinformatics, Assam University, Silchar, India
6Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic

References

1. Bauckman, K., Haller, E., Taran, N., Rockfield, S., Ruiz-Rivera, A., Nanjundan, M. (2015) Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem. J. 466, 401-413. <https://doi.org/10.1042/BJ20140878>
2. Bilcikova, J., Fialkova, V., Duranova, H., Kovacikova, E., Forgacs, Z., Gren, A., Massanyi, P., Lukac, N., Roychoudhury, S., Knazicka, Z. (2020) Copper affects steroidogenesis and viability of human adrenocortical carcinoma (NCIH295R) cell line in vitro. J. Environ. Sci. Health, Part A 55, 1070-1077. <https://doi.org/10.1080/10934529.2020.1769400>
3. Carter, E. D. (1995) Oxidation-reduction reactions of metal ions. Environ. Health Perspect. 103, 17-19.
4. Clark, S. F. (2008) Iron deficiency anemia. Nutr. Clin. Pract. 23, 128-141. <https://doi.org/10.1177/0884533608314536>
5. Dev, S., Babitt, J. L. (2017) Overview of iron metabolism in health and disease. Hemodial. Int. 1, 6-20. <https://doi.org/10.1111/hdi.12542>
6. Eid, R., Arab, N. T. T., Greenwood, M. T. (2017) Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell Res. 1864, 399-430. <https://doi.org/10.1016/j.bbamcr.2016.12.002>
7. Escobar-Morreale, H. F. (2012) Iron metabolism and the polycystic ovary syndrome. Trends Endocrinol. Metab. 23, 509-515. <https://doi.org/10.1016/j.tem.2012.04.003>
8. Gazdar, A. F., Oie, H. K., Shackleton, C. H., Chen, T. R., Triche, T. J., Myers, C. E., Chrousos, G. P., Brennan, M. F., Stein, C. A., La Rocca, R. V. (1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 50, 5488-5496.
9. Gozzelino, R., Arosio, P. (2016) Iron homeostasis in health and disease. Int. J. Mol. Sci. 17, 130. <https://doi.org/10.3390/ijms17010130>
10. Hecker, M., Newsted, J. L., Murphy, M. B., Higley, E. B., Jones, P. D., Wu, R. S. S., Giesy, J. P. (2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol. Appl. Pharmacol. 217, 114-124. <https://doi.org/10.1016/j.taap.2006.07.007>
11. Jamnongkan, W., Thanan, R., Techasen, A., Namwat, N., Loilome, W., Intarawichian, P., Titapun, A., Yongvanit, P. (2017) Upregulation of transferrin receptor-I induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 39, 1010428317717655. <https://doi.org/10.1177/1010428317717655>
12. Kabata-Pendias, A., Mukherjee, A. B. (2007) Trace Elements from Soil to Human. e-Book, Springer-Verlag, Heidelberg, Germany.
13. Knazicka, Z., Lukac, N., Forgacs, Z., Tvrda, E., Lukacova, J., Slivkova, J., Binkowski, L., Massanyi, P. (2013) Effects of mercury on the steroidogenesis of human adrenocarcinoma (NCI-H295R) cell line. J. Environ. Sci. Health A 48, 348-353. <https://doi.org/10.1080/10934529.2013.726908>
14. Knazicka, Z., Forgacs, Z., Lukacova, J., Roychoudhury, S., Massanyi, P., Lukac, N. (2015) Endocrine disruptive effects of cadmium on steroidogenesis: human adrenocortical carcinoma cell line NCI-H295R as a cellular model for reproductive toxicity testing. J. Environ. Sci. Health A 50, 348-356. <https://doi.org/10.1080/10934529.2015.987520>
15. Lieu, P. T., Heiskala, M., Peterson, P. A., Yang, Y. (2001) The roles of iron in health and disease. Mol. Aspects Med. 22, 1-87. <https://doi.org/10.1016/S0098-2997(00)00006-6>
16. Lucesoli, F., Caligiuri, M., Roberti, M. F., Perazzo, J. C., Fraga, C. G. (1999) Dose-dependent increase of oxidative damage in the testes of rats subjected to acute iron overload. Arch. Biochem. Biophys. 372, 37-43. <https://doi.org/10.1006/abbi.1999.1476>
17. Lukac, N., Forgacs, Z., Duranova, H., Jambor, T., Zemanova, J., Massanyi, P., Tombarkiewicz, B., Roychoudhury, S., Knazicka, Z. (2020) In vitro assessment of the impact of nickel on the viability and steroidogenesis in the human adrenocortical carcinoma (NCI-H295R) cell line. Physiol. Res. 69, 1-30.
18. Mackenzie, E. L., Iwasaki, K., Tsuji, Y. (2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antiox. Redox Signal. 10, 997-1030. <https://doi.org/10.1089/ars.2007.1893>
19. Marzec-Wróblewska, U., Kamiński, P., Łakota, P. (2012) Influence of chemical elements on mammalian spermatozoa. Folia Biol. (Praha) 58, 7-15.
20. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. <https://doi.org/10.1016/0022-1759(83)90303-4>
21. Muckenthaler, M. U., Galy, B., Hentze, M. W. (2008) Systemic iron homeostasis and the iron-responsive element/ iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 28, 197-213. <https://doi.org/10.1146/annurev.nutr.28.061807.155521>
22. Ng, T. B., Liu W. K. (1990) Toxic effect of heavy metals on cells isolated from the rat adrenal and testis. In Vitro Cell. Dev. Biol. 26, 24-28. <https://doi.org/10.1007/BF02624150>
23. Ng, S., Norwitz, S. G., Norwitz, E. R. (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int. J. Mol. Sci. 20, 3283. <https://doi.org/10.3390/ijms20133283>
24. OECD (2011) Test No. 456: H295R Steroidogenesis assay. In: OECD Guideline for the Testing of Chemicals, Section 4, OECD Publishing, Paris.
25. Rossi, E. M., Marques, V. B., de Nunes, D. O., Carneiro, M. T. W. D., Podratz, P. L., Merlo, E., dos Santos, L., Graceli, J. B. (2016) Acute iron overload leads to hypothalamic-pituitary- gonadal axis abnormalities in female rats. Toxicol. Lett. 240, 196-213. <https://doi.org/10.1016/j.toxlet.2015.10.027>
26. Sanderson, T., van den Berg, M. (2003) Interactions of xenobiotics with the steroid hormone biosynthesis pathway. Pure Appl. Chem. 75, 1957-1971. <https://doi.org/10.1351/pac200375111957>
27. Steegmann-Olmedillas, J. L. (2011) The role of iron in tumor cell proliferation. Clin. Transl. Oncol. 13, 71-76. <https://doi.org/10.1007/s12094-011-0621-1>
28. Tvrda, E., Peer, R., Sikka, S. C., Agarwal, A. (2015) Iron and copper in male reproduction: a double-edged sword. J. Assist. Reprod. Genet. 32, 3-16. <https://doi.org/10.1007/s10815-014-0344-7>
29. Yiannikourides, A., Latunde-Dada, G. O. (2019) A short review of iron metabolism and pathophysiology of iron disorders. Medicines 6, 85. <https://doi.org/10.3390/medicines6030085>
30. Wang, J., Pantopoulos, K. (2011) Regulation of cellular iron metabolism. Biochem. J. 434, 365-381. <https://doi.org/10.1042/BJ20101825>
31. Wang, Y., Yu, L., Ding, J., Chen, Y. (2019) Iron metabolism in cancer. Int. J. Mol. Sci. 20, 95. <https://doi.org/10.3390/ijms20010095>
32. Weber, R. A., Yen, F. S., Nicholson, S. P. V., Alwaseem, H., Bayraktar, E. C., Alam, M., Timson, R. C., La K., Abu- Remaileh, M., Molina, H., Birsoy, K. (2020) Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol. Cell 77, 645-655. <https://doi.org/10.1016/j.molcel.2020.01.003>
33. Zhang, X., Yu, R. M. K., Jones, P. D., Lam, G. K. W., Newsted, J. L., Gracia, T., Hecker, M., Hilscherova, K., Sanderson, T., Wu, R. S., Giesy, J. P. (2005) Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. Environ. Sci. Technol. 39, 2777-2785. <https://doi.org/10.1021/es048679k>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive