Fol. Biol. 2021, 67, 91-101
https://doi.org/10.14712/fb2021067030091
Hypoxia-Induced LXRα Contributes to the Migration and Invasion of Gastric Cancer Cells
References
1. , S., Steffensen, K. R., Gustafsson, J. A. (2000) Structural characterisation of the mouse nuclear oxysterol receptor genes LXRα and LXR β. Gene 243, 93-103.
<https://doi.org/10.1016/S0378-1119(99)00555-7>
2. , T., Kalluri, R., Nieto, M. A., Weinberg, R. A. (2018) EMT in cancer. Nat. Rev. Cancer 18, 128-134.
<https://doi.org/10.1038/nrc.2017.118>
3. , D., Hou, M., Guan, Y. S., Jiang, M., Yang, Y., Gou, H. F. (2009) Expression of HIF-1α and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 9, 432.
<https://doi.org/10.1186/1471-2407-9-432>
4. , C., Miller, D. H., Lynch, K., Brodsky, A. S. (2014) Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol. Oncol. 135, 333-341.
<https://doi.org/10.1016/j.ygyno.2014.08.015>
5. , T., Li, K., Liu, Z., Liu, J., Wang, Y., Sun, R., Li, Z., Qiu, B., Zhang, X., Ren, G., Xu, Y., Zhang, Z. (2021) WDR5 facilitates EMT and metastasis of CCA by increasing HIF- 1α accumulation in Myc-dependent and independent pathways. Mol. Ther. 29, 2134-2150.
<https://doi.org/10.1016/j.ymthe.2021.02.017>
6. , W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X. Q., He, J. (2016) Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115-132.
<https://doi.org/10.3322/caac.21338>
7. , D. K., Tse, A. P., Xu, I. M., Cui, J. D., Lai, R. K., Li, L. L., Koh, H. Y., Tsang, F. H., Wei, L. L., Wong, C. M., Ng, I. O., Wong, C. C. (2017) Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 8, 517.
<https://doi.org/10.1038/s41467-017-00530-7>
8. , C. P., Kokontis, J. M., Hiipakka, R. A., Liao, S. (2007) Modulation of liver X receptor signaling as novel therapy for prostate cancer. J. Biomed. Sci. 14, 543-553.
<https://doi.org/10.1007/s11373-007-9160-8>
9. , J., Chen, Y., Chou, W. C., Sun, L., Chen, L., Suo, J., Ni, Z., Zhang, M., Kong, X., Hoffman, L. L., Kang, J., Su, Y., Olman, V., Johnson, D., Tench, D. W., Amster, I. J., Orlando, R., Puett, D., Li, F., Xu, Y. (2011a) An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic. Acids Res. 39, 1197-1207.
<https://doi.org/10.1093/nar/gkq960>
10. , J., Li, F., Wang, G., Fang, X., Puett, J. D., Xu, Y. (2011b) Gene-expression signatures can distinguish gastric cancer grades and stages. PLoS One 6, e17819.
<https://doi.org/10.1371/journal.pone.0017819>
11. , J. Y., Liang, H. (2014) Clinical significance of lymph node metastasis in gastric cancer. World J. Gastroenterol. 20, 3967-3975.
<https://doi.org/10.3748/wjg.v20.i14.3967>
12. , L., Restifo, D., Gorin, A., Manocha, K., Handorf, E., Yang, D., Cai, K. Q., Klein-Szanto, A. J., Cunningham, D., Kratz, L. E., Herman, G. E., Golemis, E. A., Astsaturov, I. (2015) Endogenous sterol metabolites regulate growth of EGFR/KRAS-dependent tumors via LXR. Cell Rep. 12, 1927-1938.
<https://doi.org/10.1016/j.celrep.2015.08.023>
13. , A. K., Shanafelt, T. D., Cimmino, A., Taccioli, C., Volinia, S., Liu, C., Calin, G. A., Croce, C. M., Chan, D. A., Giaccia, A. J., Secreto, C., Wellik, L. E., Lee, Y. K., Mukhopadhyay, D., Kay, N. E. (2009) Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113, 5568-5574.
<https://doi.org/10.1182/blood-2008-10-185686>
14. , M. G. V., DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669.
<https://doi.org/10.1016/j.cell.2016.12.039>
15. , A., Hong, C., Rong, X., Zhu, X., Tarling, E. J., Hedde, P. N., Gratton, E., Parks, J., Tontonoz, P. (2015) LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4, e08009.
<https://doi.org/10.7554/eLife.08009>
16. , L., Zhang, B., Zhao, G. (2017) Liver X receptor α (LXRα) promoted invasion and EMT of gastric cancer cells by regulation of NF-κB activity. Hum. Cell 30, 124-132.
<https://doi.org/10.1007/s13577-016-0157-3>
17. , S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J., Tontonoz, P. (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213-219.
<https://doi.org/10.1038/nm820>
18. , J. W., Gao, P., Liu, Y. C., Semenza, G. L. and Dang, C. V. (2007) Hypoxia-inducible factor 1 and dysregulated c- Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381-7393.
<https://doi.org/10.1128/MCB.00440-07>
19. , T., Kinoshita, T., Saiura, A., Esaki, M., Sakamoto, H., Yamanaka, T. (2015) Multicentre analysis of long-term outcome after surgical resection for gastric cancer liver metastases. Br. J. Surg. 102, 102-107.
<https://doi.org/10.1002/bjs.9684>
20. , H., Rokavec, M., Jiang, L., Horst, D., Hermeking, H. (2017) Antagonistic effects of p53 and HIF1A on microRNA -34a regulation of PPP1R11 and STAT3 and hypoxiainduced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology 153, 505-520.
<https://doi.org/10.1053/j.gastro.2017.04.017>
21. , W., Xue, D., Xue, M., Zhao, J., Liang, H., Liu, Y., Sun, T. (2019) Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol. Lett. 18, 330-338.
22. , K. J., Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25, 402-408.
<https://doi.org/10.1006/meth.2001.1262>
23. , H., Tran, L., Park, Y., Chen, I., Lan, J., Xie, Y., Semenza, G.L. (2018) Reciprocal regulation of DUSP9 and DUSP16 expression by HIF-1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment. Cancer Res. 78, 4191-4202.
<https://doi.org/10.1158/0008-5472.CAN-18-0270>
24. , A. J., Wong, W. J., Simon, M. C. (2010) Hypoxia- inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309.
<https://doi.org/10.1016/j.molcel.2010.09.022>
25. , G., Muriana, P., Bandiera, A., Fontana, R., Maggioni, D., Russo, V., Doglioni, C., Zannini, P. (2018) Prognostic role of liver X receptor-α in resected stage II and III non-small-cell lung cancer. Clin. Respir. J. 12, 241-246.
<https://doi.org/10.1111/crj.12522>
26. , L., Thomas, C., Jalil, A., Julla, J. B., Magnani, C., Ceroi, A., Basmaciyan, L., Dumont, A., Goff, W. L., Mathew, M. J., Rébé, C., Dérangère, V., Laubriet, A., Crespy, V., de Barros, J. P., Steinmetz, E., Venteclef, N., Saas, P., Lagrost, L., Masson, D. (2020) Interplay between liver X receptor and hypoxia inducible factor-1α potentiates interleukin-1β production in human macrophages. Cell. Rep. 31, 107665.
<https://doi.org/10.1016/j.celrep.2020.107665>
27. , T. Y., Lee, H. J., Oh, H. J., Huh, S., Lee, I. K., Lee, M. O. (2011) Positive cross-talk between hypoxia inducible factor-1α and liver X receptor α induces formation of triglyceride- loaded foam cells. Arterioscler. Thromb. Vasc. Biol. 31, 2949-2956.
<https://doi.org/10.1161/ATVBAHA.111.235788>
28. , E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N. J., Pillai, R. V., Sullivan, P. M., Sondhi, V., Umetani, M., Geradts, J., McDonnell, D. P. (2013) 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094-1098.
<https://doi.org/10.1126/science.1241908>
29. , T. Y., Shin, Y. K., Roh, K. J., Kang, S. A., Hong, I., Oh, S. J., Seong, J. K., Park, C. K., Choi, Y. L., Lee, M. O. (2009) Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 49, 1122-11319.
<https://doi.org/10.1002/hep.22740>
30. , M. Z., Janji, B., Abdou, A., Hasmim, M., Terry, S., Tan, T. Z., Mami-Chouaib, F., Thiery, J. P., Chouaib, S. (2017) The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6, e1263412.
<https://doi.org/10.1080/2162402X.2016.1263412>
31. , Y., Wang, B., Ma, A., Zhang, L., Xu, G., Ding, Q., Jing, T., Wu, L., Liu, Y., Yang, Z., Liu, Y. (2016) USP16 downregulation by carboxyl-terminal truncated HBx promotes the growth of hepatocellular carcinoma cells. Sci. Rep. 6, 33039.
<https://doi.org/10.1038/srep33039>
32. , G. L. (2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim. Biophys. Acta 1863, 382-391.
<https://doi.org/10.1016/j.bbamcr.2015.05.036>
33. , T., Nagao, M., Ikeda, N., Kanehiro, H., Hisanaga, M., Ko, S., Fukumoto, A., Nakajima, Y. (2003) Prognostic significance of HIF-1α overexpression in human pancreatic cancer. Anticancer Res. 23, 4721-4727.
34. , O., McCarty, M. F., Wey, J. S., Fan, F., Liu, W., Belcheva, A., Bucana, C. D., Semenza, G. L., Ellis, L. M. (2004) Role of hypoxia-inducible factor 1α in gastric cancer cell growth, angiogenesis, and vessel maturation. J. Natl. Cancer Inst. 96, 946-956.
<https://doi.org/10.1093/jnci/djh168>
35. , O. V., Nimiritsky, P. P., Tyulkova, E. I., Rybnikova, E. A. (2021) Transcription factor HIF1 negatively regulates the content of glucose-6-phosphate dehydrogenase in HEK293T cells. Cell Tissue Biol. 15, 181-188.
<https://doi.org/10.1134/S1990519X21020127>
36. , G. R., Hulce, J. J., Zanca, C., Bi, J., Ikegami, S., Cahill, G. L., Gu, Y., Lum, K. M., Masui, K., Yang, H., Rong, X., Hong, C., Turner, K. M., Liu, F., Hon, G. C., Jenkins, D., Martini, M., Armando, A. M., Quehenberger, O., Cloughesy, T. F., Furnari, F. B., Cavenee, W. K., Tontonoz, P., Gahman, T. C., Shiau, A. K., Cravatt, B. F., Mischel, P. S. (2016) An LXR-cholesterol axis creates a metabolic codependency for brain cancers. Cancer Cell 30, 683-693.
<https://doi.org/10.1016/j.ccell.2016.09.008>
37. , Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., Zhou, B. P. (2009) Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416-428.
<https://doi.org/10.1016/j.ccr.2009.03.016>
38. , M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., Wu, K. J. (2008) Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295-305.
<https://doi.org/10.1038/ncb1691>
39. , L. Y., Chen, W., Bai, X. L., Xu, X. Y., Zhang, Q., Xia, X. F., Sun, X., Li, G. G., Hu, Q. D., Fu, Q. H., Liang, T. B. (2016) Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res. 76, 818-830.
<https://doi.org/10.1158/0008-5472.CAN-15-0977>
40. , J., Xia, X., Dong, Y., Gong, Z., Li, G., Chen, G. G., Lai, P. B. S. (2021) CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling. Theranostics 11, 2123-2136.
<https://doi.org/10.7150/thno.49368>
41. , H., Lu, H., Xiang, L., Bullen, J. W., Zhang, C., Samanta, D., Gilkes, D. M., He, J., Semenza. G. L. (2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl. Acad. Sci. USA 112, E6215-62235.
42. , H., Wang, D., Zhang, L., Xie, X., Wu, Y., Liu, Y., Shao, G., Su, Z. (2014) Upregulation of autophagy by hypoxiainducible factor-1α promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol. Rep. 32, 935-942.
<https://doi.org/10.3892/or.2014.3298>
