Fol. Biol. 2021, 67, 91-101
https://doi.org/10.14712/fb2021067030091
Hypoxia-Induced LXRα Contributes to the Migration and Invasion of Gastric Cancer Cells
References
1. 2000) Structural characterisation of the mouse nuclear oxysterol receptor genes LXRα and LXR β. Gene 243, 93-103.
< , S., Steffensen, K. R., Gustafsson, J. A. (https://doi.org/10.1016/S0378-1119(99)00555-7>
2. 2018) EMT in cancer. Nat. Rev. Cancer 18, 128-134.
< , T., Kalluri, R., Nieto, M. A., Weinberg, R. A. (https://doi.org/10.1038/nrc.2017.118>
3. 2009) Expression of HIF-1α and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 9, 432.
< , D., Hou, M., Guan, Y. S., Jiang, M., Yang, Y., Gou, H. F. (https://doi.org/10.1186/1471-2407-9-432>
4. 2014) Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol. Oncol. 135, 333-341.
< , C., Miller, D. H., Lynch, K., Brodsky, A. S. (https://doi.org/10.1016/j.ygyno.2014.08.015>
5. 2021) WDR5 facilitates EMT and metastasis of CCA by increasing HIF- 1α accumulation in Myc-dependent and independent pathways. Mol. Ther. 29, 2134-2150.
< , T., Li, K., Liu, Z., Liu, J., Wang, Y., Sun, R., Li, Z., Qiu, B., Zhang, X., Ren, G., Xu, Y., Zhang, Z. (https://doi.org/10.1016/j.ymthe.2021.02.017>
6. 2016) Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115-132.
< , W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X. Q., He, J. (https://doi.org/10.3322/caac.21338>
7. 2017) Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 8, 517.
< , D. K., Tse, A. P., Xu, I. M., Cui, J. D., Lai, R. K., Li, L. L., Koh, H. Y., Tsang, F. H., Wei, L. L., Wong, C. M., Ng, I. O., Wong, C. C. (https://doi.org/10.1038/s41467-017-00530-7>
8. 2007) Modulation of liver X receptor signaling as novel therapy for prostate cancer. J. Biomed. Sci. 14, 543-553.
< , C. P., Kokontis, J. M., Hiipakka, R. A., Liao, S. (https://doi.org/10.1007/s11373-007-9160-8>
9. 2011a) An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic. Acids Res. 39, 1197-1207.
< , J., Chen, Y., Chou, W. C., Sun, L., Chen, L., Suo, J., Ni, Z., Zhang, M., Kong, X., Hoffman, L. L., Kang, J., Su, Y., Olman, V., Johnson, D., Tench, D. W., Amster, I. J., Orlando, R., Puett, D., Li, F., Xu, Y. (https://doi.org/10.1093/nar/gkq960>
10. 2011b) Gene-expression signatures can distinguish gastric cancer grades and stages. PLoS One 6, e17819.
< , J., Li, F., Wang, G., Fang, X., Puett, J. D., Xu, Y. (https://doi.org/10.1371/journal.pone.0017819>
11. 2014) Clinical significance of lymph node metastasis in gastric cancer. World J. Gastroenterol. 20, 3967-3975.
< , J. Y., Liang, H. (https://doi.org/10.3748/wjg.v20.i14.3967>
12. 2015) Endogenous sterol metabolites regulate growth of EGFR/KRAS-dependent tumors via LXR. Cell Rep. 12, 1927-1938.
< , L., Restifo, D., Gorin, A., Manocha, K., Handorf, E., Yang, D., Cai, K. Q., Klein-Szanto, A. J., Cunningham, D., Kratz, L. E., Herman, G. E., Golemis, E. A., Astsaturov, I. (https://doi.org/10.1016/j.celrep.2015.08.023>
13. 2009) Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113, 5568-5574.
< , A. K., Shanafelt, T. D., Cimmino, A., Taccioli, C., Volinia, S., Liu, C., Calin, G. A., Croce, C. M., Chan, D. A., Giaccia, A. J., Secreto, C., Wellik, L. E., Lee, Y. K., Mukhopadhyay, D., Kay, N. E. (https://doi.org/10.1182/blood-2008-10-185686>
14. 2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669.
< , M. G. V., DeBerardinis, R. J. (https://doi.org/10.1016/j.cell.2016.12.039>
15. 2015) LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4, e08009.
< , A., Hong, C., Rong, X., Zhu, X., Tarling, E. J., Hedde, P. N., Gratton, E., Parks, J., Tontonoz, P. (https://doi.org/10.7554/eLife.08009>
16. 2017) Liver X receptor α (LXRα) promoted invasion and EMT of gastric cancer cells by regulation of NF-κB activity. Hum. Cell 30, 124-132.
< , L., Zhang, B., Zhao, G. (https://doi.org/10.1007/s13577-016-0157-3>
17. 2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213-219.
< , S. B., Castrillo, A., Laffitte, B. A., Mangelsdorf, D. J., Tontonoz, P. (https://doi.org/10.1038/nm820>
18. 2007) Hypoxia-inducible factor 1 and dysregulated c- Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381-7393.
< , J. W., Gao, P., Liu, Y. C., Semenza, G. L. and Dang, C. V. (https://doi.org/10.1128/MCB.00440-07>
19. 2015) Multicentre analysis of long-term outcome after surgical resection for gastric cancer liver metastases. Br. J. Surg. 102, 102-107.
< , T., Kinoshita, T., Saiura, A., Esaki, M., Sakamoto, H., Yamanaka, T. (https://doi.org/10.1002/bjs.9684>
20. 2017) Antagonistic effects of p53 and HIF1A on microRNA -34a regulation of PPP1R11 and STAT3 and hypoxiainduced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology 153, 505-520.
< , H., Rokavec, M., Jiang, L., Horst, D., Hermeking, H. (https://doi.org/10.1053/j.gastro.2017.04.017>
21. 2019) Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol. Lett. 18, 330-338.
, W., Xue, D., Xue, M., Zhao, J., Liang, H., Liu, Y., Sun, T. (
22. 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25, 402-408.
< , K. J., Schmittgen, T. D. (https://doi.org/10.1006/meth.2001.1262>
23. 2018) Reciprocal regulation of DUSP9 and DUSP16 expression by HIF-1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment. Cancer Res. 78, 4191-4202.
< , H., Tran, L., Park, Y., Chen, I., Lan, J., Xie, Y., Semenza, G.L. (https://doi.org/10.1158/0008-5472.CAN-18-0270>
24. 2010) Hypoxia- inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309.
< , A. J., Wong, W. J., Simon, M. C. (https://doi.org/10.1016/j.molcel.2010.09.022>
25. 2018) Prognostic role of liver X receptor-α in resected stage II and III non-small-cell lung cancer. Clin. Respir. J. 12, 241-246.
< , G., Muriana, P., Bandiera, A., Fontana, R., Maggioni, D., Russo, V., Doglioni, C., Zannini, P. (https://doi.org/10.1111/crj.12522>
26. 2020) Interplay between liver X receptor and hypoxia inducible factor-1α potentiates interleukin-1β production in human macrophages. Cell. Rep. 31, 107665.
< , L., Thomas, C., Jalil, A., Julla, J. B., Magnani, C., Ceroi, A., Basmaciyan, L., Dumont, A., Goff, W. L., Mathew, M. J., Rébé, C., Dérangère, V., Laubriet, A., Crespy, V., de Barros, J. P., Steinmetz, E., Venteclef, N., Saas, P., Lagrost, L., Masson, D. (https://doi.org/10.1016/j.celrep.2020.107665>
27. 2011) Positive cross-talk between hypoxia inducible factor-1α and liver X receptor α induces formation of triglyceride- loaded foam cells. Arterioscler. Thromb. Vasc. Biol. 31, 2949-2956.
< , T. Y., Lee, H. J., Oh, H. J., Huh, S., Lee, I. K., Lee, M. O. (https://doi.org/10.1161/ATVBAHA.111.235788>
28. 2013) 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094-1098.
< , E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N. J., Pillai, R. V., Sullivan, P. M., Sondhi, V., Umetani, M., Geradts, J., McDonnell, D. P. (https://doi.org/10.1126/science.1241908>
29. 2009) Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 49, 1122-11319.
< , T. Y., Shin, Y. K., Roh, K. J., Kang, S. A., Hong, I., Oh, S. J., Seong, J. K., Park, C. K., Choi, Y. L., Lee, M. O. (https://doi.org/10.1002/hep.22740>
30. 2017) The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6, e1263412.
< , M. Z., Janji, B., Abdou, A., Hasmim, M., Terry, S., Tan, T. Z., Mami-Chouaib, F., Thiery, J. P., Chouaib, S. (https://doi.org/10.1080/2162402X.2016.1263412>
31. 2016) USP16 downregulation by carboxyl-terminal truncated HBx promotes the growth of hepatocellular carcinoma cells. Sci. Rep. 6, 33039.
< , Y., Wang, B., Ma, A., Zhang, L., Xu, G., Ding, Q., Jing, T., Wu, L., Liu, Y., Yang, Z., Liu, Y. (https://doi.org/10.1038/srep33039>
32. 2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim. Biophys. Acta 1863, 382-391.
< , G. L. (https://doi.org/10.1016/j.bbamcr.2015.05.036>
33. 2003) Prognostic significance of HIF-1α overexpression in human pancreatic cancer. Anticancer Res. 23, 4721-4727.
, T., Nagao, M., Ikeda, N., Kanehiro, H., Hisanaga, M., Ko, S., Fukumoto, A., Nakajima, Y. (
34. 2004) Role of hypoxia-inducible factor 1α in gastric cancer cell growth, angiogenesis, and vessel maturation. J. Natl. Cancer Inst. 96, 946-956.
< , O., McCarty, M. F., Wey, J. S., Fan, F., Liu, W., Belcheva, A., Bucana, C. D., Semenza, G. L., Ellis, L. M. (https://doi.org/10.1093/jnci/djh168>
35. 2021) Transcription factor HIF1 negatively regulates the content of glucose-6-phosphate dehydrogenase in HEK293T cells. Cell Tissue Biol. 15, 181-188.
< , O. V., Nimiritsky, P. P., Tyulkova, E. I., Rybnikova, E. A. (https://doi.org/10.1134/S1990519X21020127>
36. 2016) An LXR-cholesterol axis creates a metabolic codependency for brain cancers. Cancer Cell 30, 683-693.
< , G. R., Hulce, J. J., Zanca, C., Bi, J., Ikegami, S., Cahill, G. L., Gu, Y., Lum, K. M., Masui, K., Yang, H., Rong, X., Hong, C., Turner, K. M., Liu, F., Hon, G. C., Jenkins, D., Martini, M., Armando, A. M., Quehenberger, O., Cloughesy, T. F., Furnari, F. B., Cavenee, W. K., Tontonoz, P., Gahman, T. C., Shiau, A. K., Cravatt, B. F., Mischel, P. S. (https://doi.org/10.1016/j.ccell.2016.09.008>
37. 2009) Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416-428.
< , Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., Zhou, B. P. (https://doi.org/10.1016/j.ccr.2009.03.016>
38. 2008) Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295-305.
< , M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., Wu, K. J. (https://doi.org/10.1038/ncb1691>
39. 2016) Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res. 76, 818-830.
< , L. Y., Chen, W., Bai, X. L., Xu, X. Y., Zhang, Q., Xia, X. F., Sun, X., Li, G. G., Hu, Q. D., Fu, Q. H., Liang, T. B. (https://doi.org/10.1158/0008-5472.CAN-15-0977>
40. 2021) CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling. Theranostics 11, 2123-2136.
< , J., Xia, X., Dong, Y., Gong, Z., Li, G., Chen, G. G., Lai, P. B. S. (https://doi.org/10.7150/thno.49368>
41. 2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl. Acad. Sci. USA 112, E6215-62235.
, H., Lu, H., Xiang, L., Bullen, J. W., Zhang, C., Samanta, D., Gilkes, D. M., He, J., Semenza. G. L. (
42. 2014) Upregulation of autophagy by hypoxiainducible factor-1α promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol. Rep. 32, 935-942.
< , H., Wang, D., Zhang, L., Xie, X., Wu, Y., Liu, Y., Shao, G., Su, Z. (https://doi.org/10.3892/or.2014.3298>