Fol. Biol. 2021, 67, 163-173

https://doi.org/10.14712/fb2021067050163

Identification of Schizosaccharomyces pombe ird Mutants Resistant to Glucose Suppression and Oxidative Stress

M. Yilmazer1, B. Bayrak2, B. Kartal2, S. K. Uzuner1, Bedia Palabiyik1

1Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
2Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34116, Istanbul, Turkey

Received May 2021
Accepted December 2021

References

1. Arnold, C. N., Xia, Y., Lin, P., Ross, C., Schwander, M., Smart, N. G., Müller, U., Beutler, B. (2011) Rapid identification of a disease allele in mouse through whole-genome sequencing and bulk segregation analysis. Genetics 187, 633-641. <https://doi.org/10.1534/genetics.110.124586>
2. Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., Mckenzie III, A., Steever, A. B., Wach, A., Philippsen, P., Pringle, J. R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943-951. <https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y>
3. Blumenstiel, J. P., Noll, A. C., Griffiths, J. A., Perera, A. G., Walton, K. N., Gilliland, W. D., Hawley, R. S., Staehling- Hampton, K. (2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182, 25-32. <https://doi.org/10.1534/genetics.109.101998>
4. Carlson, M. (1999) Glucose repression in yeast. Curr. Opin. Microbiol. 2, 202-207. <https://doi.org/10.1016/S1369-5274(99)80035-6>
5. Chen, D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., Bähler, J. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14, 214-229. <https://doi.org/10.1091/mbc.e02-08-0499>
6. Chen, D., Wilkinson, C. R. M., Watt, S., Penkett, C. J., Toone, W. M., Jones, N., Bähler, J. (2008) Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol. Biol. Cell 19, 308-317. <https://doi.org/10.1091/mbc.e07-08-0735>
7. Doitsidou, M., Poole, R. J., Sarin, S., Bigelow, H., Hobert, O. (2010) C. elegans mutant identification with a one-step whole-genome sequencing and SNP mapping strategy. PloS One 5, e15435. <https://doi.org/10.1371/journal.pone.0015435>
8. Evilä, A., Arumilli, M., Udd, B., Hackman, P. (2016) Targeted next-generation sequencing assay for detection of mutations in primary myopathies. Neuromuscul. Disord. 26, 7-15. <https://doi.org/10.1016/j.nmd.2015.10.003>
9. Forsburg, S. L. (2001) The art and design of genetic screens: yeast. Nature 2, 659-668.
10. Gregan, J., Rabitsch, P. K., Rumpf, C., Novatchkova, M., Schleiffer, A., Nasmyth, K. (2006) High-throughput knockout screen in fission yeast. Nat. Protoc. 1, 2457. <https://doi.org/10.1038/nprot.2006.385>
11. Gutz, H., Heslot, H., Leupold, U., Loprieno, N. (1974) Schizosaccharomyces pombe, ed. King, R. C., pp. 295-446, Handbook of Genetics, New York.
12. Heiland, S., Radovanovic, N., Höfer, M., Winderickx, J., Lichtenberg, H. (2000) Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182, 2153-2162. <https://doi.org/10.1128/JB.182.8.2153-2162.2000>
13. Henry, I. M., Nagalakshmi, U., Lieberman, M. C., Ngo, K. J., Krasileva, K. V., Vasquez-Gross, H., Akhunova, A., Akhunov, E., Dubcovsky, J., Tai, T. H., Comai, L. (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26, 1382-1397. <https://doi.org/10.1105/tpc.113.121590>
14. Hoffman, C. S. (2005) Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem. Soc. Trans. 33, 257-260. <https://doi.org/10.1042/BST0330257>
15. Johnston, M. (1999) Feasting, fasting and fermenting glucose sensing in yeast and other cells. Trends Genet. 15, 29-33. <https://doi.org/10.1016/S0168-9525(98)01637-0>
16. Keeney, J. B., Boeke, J. D. (1994) Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136, 849-856. <https://doi.org/10.1093/genetics/136.3.849>
17. Kettenbach, A. N., Deng, L., Wu, Y., Baldissard, S., Adamo, M. E., Gerber, S. A., Moseley, J. B. (2015) Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Mol. Cell. Proteomics 14, 1275-87. <https://doi.org/10.1074/mcp.M114.045245>
18. Kıg, C., Turkel, S., Temizkan, G. (2005) Isolation and characterization of glucose derepressed invertase mutants from Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 69, 2475-2478. <https://doi.org/10.1271/bbb.69.2475>
19. Krawchuk, M. D., Wahls, W. P. (1999) High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 15, 1419-1427. <https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q>
20. Laussel, C., Léon, S. (2020) Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem. Pharmacol. 182, 114213. <https://doi.org/10.1016/j.bcp.2020.114213>
21. Leshchiner, I., Alexa, K., Kelsey, P., Adzhubei, I., Austin-Tse, C. A., Cooney, J. D., Anderson, H., King, M. J., Stottmann, R. W., Garnaas, M. K., Ha, S., Drummond, I. A., Paw, B. H., North, T. E., Beier D. R., Goessling, W., Sunyaev, S. R. (2012) Mutation mapping and identification by whole-genome sequencing. Genome Res. 22, 1541-1548. <https://doi.org/10.1101/gr.135541.111>
22. Li, H., (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, https://arxiv.org/abs/1303.3997
23. Madrid, M., Soto, T., Franco, A., Paredes, V., Vicente, J., Hidalgo, E., Gacto, M., Cansado, J. (2004) A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. J. Biol. Chem. 279, 41594-41602. <https://doi.org/10.1074/jbc.M405509200>
24. Matsuzawa, T., Fujita, Y., Tohda, H., Takegawa, K. (2012) Snf1-like protein kinase Ssp2 regulates glucose derepression in Schizosaccharomyces pombe. Eukaryot. Cell 11, 159-167. <https://doi.org/10.1128/EC.05268-11>
25. Maundrell, K. (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127-130. <https://doi.org/10.1016/0378-1119(93)90551-D>
26. McCartney, R. R., Chandrashekarappa, D. G., Zhang, B. B., Schmidt, M. C. (2014) Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics 198, 635-646. <https://doi.org/10.1534/genetics.114.169060>
27. Mehta, S. V., Patil, V. B., Velmurugan, S., Lobo, Z., Maitra, P. K. (1998) Std1, a gene involved in glucose transport in Schizosaccharomyces pombe. J. Bacteriol. 180, 674-679. <https://doi.org/10.1128/JB.180.3.674-679.1998>
28. Mikumo, D., Takaya, M., Orikasa, Y., Ohwada, T. (2015) Improved leavening ability of a wild yeast, Saccharomyces cerevisiae AK46 2-deoxyglucose resistant mutant. Food Sci. Technol. Res. 21, 623-630. <https://doi.org/10.3136/fstr.21.623>
29. Mokry, M., Nijman, I. J., van Dijken, A., Benjamins, R., Heidstra, R., Scheres, B., Cuppen, E. (2011) Identification of factors required for meristem function in Arabidopsis using a novel next generation sequencing fast forward genetics approach. BMC Genomics 12, 1-10. <https://doi.org/10.1186/1471-2164-12-256>
30. Moreno, S., Klar, A., Nurse, P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Molecular biology of the fission yeast S. pombe. Methods Enzymol. 194, 795-823. <https://doi.org/10.1016/0076-6879(91)94059-L>
31. Nguyen, M. T., Lertwattanasakul, N., Rodrussamee, N., Limtong, S., Kosaka, T., Yamada, M. (2015) A Kluyveromyces marxianus 2-deoxyglucose-resistant mutant with enhanced activity of xylose utilization. Int. Microbiol. 18, 235-244.
32. Novak, S., D’Amore, T., Russell, I., Stewart, G. G. (1990) Characterization of sugar transport in 2-deoxy-D-glucose resistant mutants of yeast. J. Ind. Microbiol, 6, 149-155. <https://doi.org/10.1007/BF01576435>
33. Palabiyik, B., Kig, C., Pekmez, M., Dalyan, L., Arda, N., Temizkan, G. (2012) Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem. Genet. 50, 336-349. <https://doi.org/10.1007/s10528-011-9477-x>
34. Palabiyik, B., Jafari-Ghods, F., Onay-Ucar, E. (2013) The effects of glucose sensing/signaling on oxidative stress response in glucose repression mutants of Schizosaccharomyces pombe. Genet. Mol. Res. 12, 5046-5056. <https://doi.org/10.4238/2013.October.25.3>
35. Palabiyik, B., Ghods, F. J. (2015) Role of oxidative stress response and trehalose accumulation in the longevity of fission yeast. Jundishapur J. Microbiol. 8, 6. <https://doi.org/10.5812/jjm.8(6)2015.16851>
36. Pasion, S. G., Forsburg, S. L. (1999) Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell 10, 4043-4057. <https://doi.org/10.1091/mbc.10.12.4043>
37. Rolland, F., Winderickx, J., Thevelein, J. M. (2001) Glucosesensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26, 310-317. <https://doi.org/10.1016/S0968-0004(01)01805-9>
38. Roux, A. E., Leroux, A., Alaamery, M. A., Hoffman, C. S., Chartrand, P., Ferbeyre, G., Rokeach, L. A. (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet. 5, e1000408. <https://doi.org/10.1371/journal.pgen.1000408>
39. Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu, Y. M., Cao, X., Kalyana-Sundaram, S., Sam, L., Balbin, O. A., Quist, M. J., Barrette, T., Everett, J., Siddiqui, J., Kunju, L. P., Navone, N., Araujo, J. C., Troncoso, P., Logothetis, C. J., Innis, J. W., Smith, D. C., Lao, C. D., Kim, S. Y., Roberts, J. S., Gruber, S. B., Pienta, K. J., Talpaz, M., Chinnaiyanet, A. M. (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111-121. <https://doi.org/10.1126/scitranslmed.3003161>
40. Salk, J. J., Schmitt, M. W., Loeb, L. A. (2018) Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269. <https://doi.org/10.1038/nrg.2017.117>
41. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (2nd ed). Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
42. Schneeberger, K. (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nature 15, 662-676.
43. Shao, D., Lin, Y., Liu, J., Wan, L., Liu, Z., Cheng, S., Fei, L., Deng, R., Wang, J., Chen, X., Liu, L., Gu, X., Liang, W., He, P., Wang, J., Ye, M., He, J. (2016) A targeted nextgeneration sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma. Sci. Rep. 6, 1-9.
44. Siddique, M. I., Back, S., Lee, J. H., Jo, J., Jang, S., Han, K., Venkatesh, J., Kwon, J. K., Jo, Y. D., Kang, B. C. (2020) Development and characterization of an ethyl methane sulfonate (EMS) induced mutant population in Capsicum annuum L. Plants 9, 396. <https://doi.org/10.3390/plants9030396>
45. Sims, D., Sudbery, I., Ilott, N. E., Heger, A., Ponting, C. P. (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121-132. <https://doi.org/10.1038/nrg3642>
46. Vishwanatha, A., D’Souza, C. J. M. (2017) Multifaceted effects of antimetabolite and anticancer drug, 2-deoxyglucose on eukaryotic cancer models budding and fission yeast. IUBMB Life 69, 137-147. <https://doi.org/10.1002/iub.1599>
47. Welton, R. M., Hoffmann, C. S. (2000) Glucose monitoring in fission yeast via the gpa2 Ga, the git5 Gß and the git3 putative glucose receptor. Genetics 156, 513-521. <https://doi.org/10.1093/genetics/156.2.513>
48. Wood, V., Harris, M. A., McDowall, M. D., Rutherford, K., Vaughan, B. W., Staines, D. M., Aslett, M., Lock, A., Bähler, J., Kersey, P. J., Oliver, S. G. (2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res. 40, D695-699. <https://doi.org/10.1093/nar/gkr853>
49. Yan, W., Deng, X. W., Yang, C., Tang, X. (2021) The genomewide EMS mutagenesis bias correlates with sequence context and chromatin structure in rice. Front Plant Sci. 12, 370. <https://doi.org/10.3389/fpls.2021.579675>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive