Fol. Biol. 2021, 67, 163-173
https://doi.org/10.14712/fb2021067050163
Identification of Schizosaccharomyces pombe ird Mutants Resistant to Glucose Suppression and Oxidative Stress
References
1. 2011) Rapid identification of a disease allele in mouse through whole-genome sequencing and bulk segregation analysis. Genetics 187, 633-641.
< , C. N., Xia, Y., Lin, P., Ross, C., Schwander, M., Smart, N. G., Müller, U., Beutler, B. (https://doi.org/10.1534/genetics.110.124586>
2. 1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943-951.
< , J., Wu, J. Q., Longtine, M. S., Shah, N. G., Mckenzie III, A., Steever, A. B., Wach, A., Philippsen, P., Pringle, J. R. (https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y>
3. 2009) Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 182, 25-32.
< , J. P., Noll, A. C., Griffiths, J. A., Perera, A. G., Walton, K. N., Gilliland, W. D., Hawley, R. S., Staehling- Hampton, K. (https://doi.org/10.1534/genetics.109.101998>
4. 1999) Glucose repression in yeast. Curr. Opin. Microbiol. 2, 202-207.
< , M. (https://doi.org/10.1016/S1369-5274(99)80035-6>
5. 2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14, 214-229.
< , D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., Bähler, J. (https://doi.org/10.1091/mbc.e02-08-0499>
6. 2008) Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol. Biol. Cell 19, 308-317.
< , D., Wilkinson, C. R. M., Watt, S., Penkett, C. J., Toone, W. M., Jones, N., Bähler, J. (https://doi.org/10.1091/mbc.e07-08-0735>
7. 2010) C. elegans mutant identification with a one-step whole-genome sequencing and SNP mapping strategy. PloS One 5, e15435.
< , M., Poole, R. J., Sarin, S., Bigelow, H., Hobert, O. (https://doi.org/10.1371/journal.pone.0015435>
8. 2016) Targeted next-generation sequencing assay for detection of mutations in primary myopathies. Neuromuscul. Disord. 26, 7-15.
< , A., Arumilli, M., Udd, B., Hackman, P. (https://doi.org/10.1016/j.nmd.2015.10.003>
9. 2001) The art and design of genetic screens: yeast. Nature 2, 659-668.
, S. L. (
10. 2006) High-throughput knockout screen in fission yeast. Nat. Protoc. 1, 2457.
< , J., Rabitsch, P. K., Rumpf, C., Novatchkova, M., Schleiffer, A., Nasmyth, K. (https://doi.org/10.1038/nprot.2006.385>
11. Gutz, H., Heslot, H., Leupold, U., Loprieno, N. (1974) Schizosaccharomyces pombe, ed. King, R. C., pp. 295-446, Handbook of Genetics, New York.
12. 2000) Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182, 2153-2162.
< , S., Radovanovic, N., Höfer, M., Winderickx, J., Lichtenberg, H. (https://doi.org/10.1128/JB.182.8.2153-2162.2000>
13. 2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26, 1382-1397.
< , I. M., Nagalakshmi, U., Lieberman, M. C., Ngo, K. J., Krasileva, K. V., Vasquez-Gross, H., Akhunova, A., Akhunov, E., Dubcovsky, J., Tai, T. H., Comai, L. (https://doi.org/10.1105/tpc.113.121590>
14. 2005) Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem. Soc. Trans. 33, 257-260.
< , C. S. (https://doi.org/10.1042/BST0330257>
15. 1999) Feasting, fasting and fermenting glucose sensing in yeast and other cells. Trends Genet. 15, 29-33.
< , M. (https://doi.org/10.1016/S0168-9525(98)01637-0>
16. 1994) Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136, 849-856.
< , J. B., Boeke, J. D. (https://doi.org/10.1093/genetics/136.3.849>
17. 2015) Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Mol. Cell. Proteomics 14, 1275-87.
< , A. N., Deng, L., Wu, Y., Baldissard, S., Adamo, M. E., Gerber, S. A., Moseley, J. B. (https://doi.org/10.1074/mcp.M114.045245>
18. 2005) Isolation and characterization of glucose derepressed invertase mutants from Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 69, 2475-2478.
< , C., Turkel, S., Temizkan, G. (https://doi.org/10.1271/bbb.69.2475>
19. 1999) High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 15, 1419-1427.
< , M. D., Wahls, W. P. (https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q>
20. 2020) Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem. Pharmacol. 182, 114213.
< , C., Léon, S. (https://doi.org/10.1016/j.bcp.2020.114213>
21. 2012) Mutation mapping and identification by whole-genome sequencing. Genome Res. 22, 1541-1548.
< , I., Alexa, K., Kelsey, P., Adzhubei, I., Austin-Tse, C. A., Cooney, J. D., Anderson, H., King, M. J., Stottmann, R. W., Garnaas, M. K., Ha, S., Drummond, I. A., Paw, B. H., North, T. E., Beier D. R., Goessling, W., Sunyaev, S. R. (https://doi.org/10.1101/gr.135541.111>
22. Li, H., (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, https://arxiv.org/abs/1303.3997
23. 2004) A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. J. Biol. Chem. 279, 41594-41602.
< , M., Soto, T., Franco, A., Paredes, V., Vicente, J., Hidalgo, E., Gacto, M., Cansado, J. (https://doi.org/10.1074/jbc.M405509200>
24. 2012) Snf1-like protein kinase Ssp2 regulates glucose derepression in Schizosaccharomyces pombe. Eukaryot. Cell 11, 159-167.
< , T., Fujita, Y., Tohda, H., Takegawa, K. (https://doi.org/10.1128/EC.05268-11>
25. 1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127-130.
< , K. (https://doi.org/10.1016/0378-1119(93)90551-D>
26. 2014) Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics 198, 635-646.
< , R. R., Chandrashekarappa, D. G., Zhang, B. B., Schmidt, M. C. (https://doi.org/10.1534/genetics.114.169060>
27. 1998) Std1, a gene involved in glucose transport in Schizosaccharomyces pombe. J. Bacteriol. 180, 674-679.
< , S. V., Patil, V. B., Velmurugan, S., Lobo, Z., Maitra, P. K. (https://doi.org/10.1128/JB.180.3.674-679.1998>
28. 2015) Improved leavening ability of a wild yeast, Saccharomyces cerevisiae AK46 2-deoxyglucose resistant mutant. Food Sci. Technol. Res. 21, 623-630.
< , D., Takaya, M., Orikasa, Y., Ohwada, T. (https://doi.org/10.3136/fstr.21.623>
29. 2011) Identification of factors required for meristem function in Arabidopsis using a novel next generation sequencing fast forward genetics approach. BMC Genomics 12, 1-10.
< , M., Nijman, I. J., van Dijken, A., Benjamins, R., Heidstra, R., Scheres, B., Cuppen, E. (https://doi.org/10.1186/1471-2164-12-256>
30. 1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Molecular biology of the fission yeast S. pombe. Methods Enzymol. 194, 795-823.
< , S., Klar, A., Nurse, P. (https://doi.org/10.1016/0076-6879(91)94059-L>
31. 2015) A Kluyveromyces marxianus 2-deoxyglucose-resistant mutant with enhanced activity of xylose utilization. Int. Microbiol. 18, 235-244.
, M. T., Lertwattanasakul, N., Rodrussamee, N., Limtong, S., Kosaka, T., Yamada, M. (
32. 1990) Characterization of sugar transport in 2-deoxy-D-glucose resistant mutants of yeast. J. Ind. Microbiol, 6, 149-155.
< , S., D’Amore, T., Russell, I., Stewart, G. G. (https://doi.org/10.1007/BF01576435>
33. 2012) Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem. Genet. 50, 336-349.
< , B., Kig, C., Pekmez, M., Dalyan, L., Arda, N., Temizkan, G. (https://doi.org/10.1007/s10528-011-9477-x>
34. 2013) The effects of glucose sensing/signaling on oxidative stress response in glucose repression mutants of Schizosaccharomyces pombe. Genet. Mol. Res. 12, 5046-5056.
< , B., Jafari-Ghods, F., Onay-Ucar, E. (https://doi.org/10.4238/2013.October.25.3>
35. 2015) Role of oxidative stress response and trehalose accumulation in the longevity of fission yeast. Jundishapur J. Microbiol. 8, 6.
< , B., Ghods, F. J. (https://doi.org/10.5812/jjm.8(6)2015.16851>
36. 1999) Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell 10, 4043-4057.
< , S. G., Forsburg, S. L. (https://doi.org/10.1091/mbc.10.12.4043>
37. 2001) Glucosesensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26, 310-317.
< , F., Winderickx, J., Thevelein, J. M. (https://doi.org/10.1016/S0968-0004(01)01805-9>
38. 2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet. 5, e1000408.
< , A. E., Leroux, A., Alaamery, M. A., Hoffman, C. S., Chartrand, P., Ferbeyre, G., Rokeach, L. A. (https://doi.org/10.1371/journal.pgen.1000408>
39. 2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111-121.
< , S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu, Y. M., Cao, X., Kalyana-Sundaram, S., Sam, L., Balbin, O. A., Quist, M. J., Barrette, T., Everett, J., Siddiqui, J., Kunju, L. P., Navone, N., Araujo, J. C., Troncoso, P., Logothetis, C. J., Innis, J. W., Smith, D. C., Lao, C. D., Kim, S. Y., Roberts, J. S., Gruber, S. B., Pienta, K. J., Talpaz, M., Chinnaiyanet, A. M. (https://doi.org/10.1126/scitranslmed.3003161>
40. 2018) Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269.
< , J. J., Schmitt, M. W., Loeb, L. A. (https://doi.org/10.1038/nrg.2017.117>
41. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (2nd ed). Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
42. 2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nature 15, 662-676.
, K. (
43. 2016) A targeted nextgeneration sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma. Sci. Rep. 6, 1-9.
, D., Lin, Y., Liu, J., Wan, L., Liu, Z., Cheng, S., Fei, L., Deng, R., Wang, J., Chen, X., Liu, L., Gu, X., Liang, W., He, P., Wang, J., Ye, M., He, J. (
44. 2020) Development and characterization of an ethyl methane sulfonate (EMS) induced mutant population in Capsicum annuum L. Plants 9, 396.
< , M. I., Back, S., Lee, J. H., Jo, J., Jang, S., Han, K., Venkatesh, J., Kwon, J. K., Jo, Y. D., Kang, B. C. (https://doi.org/10.3390/plants9030396>
45. 2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121-132.
< , D., Sudbery, I., Ilott, N. E., Heger, A., Ponting, C. P. (https://doi.org/10.1038/nrg3642>
46. 2017) Multifaceted effects of antimetabolite and anticancer drug, 2-deoxyglucose on eukaryotic cancer models budding and fission yeast. IUBMB Life 69, 137-147.
< , A., D’Souza, C. J. M. (https://doi.org/10.1002/iub.1599>
47. 2000) Glucose monitoring in fission yeast via the gpa2 Ga, the git5 Gß and the git3 putative glucose receptor. Genetics 156, 513-521.
< , R. M., Hoffmann, C. S. (https://doi.org/10.1093/genetics/156.2.513>
48. 2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res. 40, D695-699.
< , V., Harris, M. A., McDowall, M. D., Rutherford, K., Vaughan, B. W., Staines, D. M., Aslett, M., Lock, A., Bähler, J., Kersey, P. J., Oliver, S. G. (https://doi.org/10.1093/nar/gkr853>
49. Yan, W., Deng, X. W., Yang, C., Tang, X. (2021) The genomewide EMS mutagenesis bias correlates with sequence context and chromatin structure in rice. Front Plant Sci. 12, 370.
<https://doi.org/10.3389/fpls.2021.579675>