Fol. Biol. 2021, 67, 174-182
https://doi.org/10.14712/fb2021067050174
Tri-Lineage Differentiation of NTERA2 Clone D1 Cells towards Neural, Hepatic and Osteogenic Lineages in Vitro
References
1. 2019) FAT1 cadherin controls neuritogenesis during NTERA2 cell differentiation. Biochem. Biophys. Res. Commun. 514, 625-631.
< , A., de Bock, C., Sontag, E., Hondermarck, H., Lincz, L., Thorne, R. (https://doi.org/10.1016/j.bbrc.2019.04.197>
2. 2020) Prospect of stem cell therapy and regenerative medicine in osteoporosis. Front. Endocrinol. (Lausanne) 11, 430.
< , B., Sarvari, M., Alavi-Moghadam, S., Payab, M., Goodarzi, P., Gilany, K., Mehrdad, N., Larijani, B. (https://doi.org/10.3389/fendo.2020.00430>
3. 2012) Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J. Neurosci. Res. 91, 30-41
, B., Wang, X., Wang, Z., Wang, Y., Chen, L., Luo, Z. (
4. 2019) Complementation of dopaminergic signaling by Pitx3–GDNF synergy induces dopamine secretion by multipotent NTERA2 cells. J. Cell Biochem. 121, 200-212.
< Boroujeni, M., Aliaghaei, A., Maghsoudi, N., Gardaneh, M. (https://doi.org/10.1002/jcb.29109>
5. 2019) Curcumin induces neural differentiation of human pluripotent embryonal carcinoma cells through the activation of autophagy. Biomed. Res. Int. 2019, 2019, 1-12.
< , N., Rujanapun, N., Kunhorm, P., Jaroonwitchawan, T., Chaicharoenaudomrung, N., Promjantuek, W., Noisa, P. (https://doi.org/10.1155/2019/4378710>
6. 2018) Effects of exposure to acetaminophen and ibuprofen on fetal germ cell development in both sexes in rodent and human using multiple experimental systems. Environ. Health Perspect. 126, 047006.
< , P., Anderson, R., Macdonald, J., van den Driesche, S., Kilcoyne, K., Jørgensen, A., McKinnell, C., Macpherson, S., Sharpe, R., Mitchell, R. (https://doi.org/10.1289/EHP2307>
7. 2005) Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes. World J. Gastroenterol. 11, 7461.
< , X. Q., Zang, W. J., Bao, L. J., Li, D. L., Song, T. S., Xu, X. L., Yu, X. J. (https://doi.org/10.3748/wjg.v11.i47.7461>
8. 2018) Inhibition of cell growth by cellular differentiation into adipocyte-like cells in dexamethasone sensitive cancer cell lines. Anim. Cells Syst. (Seoul) 22, 178-188.
< , H., Moon, S., Lee, W., Lee, H., Shivakumar, S., Lee, S., Park, B., Rho, G., Jeon, B. (https://doi.org/10.1080/19768354.2018.1476408>
9. Linneberg-Agerholm, M., Wong, Y., Romero Herrera, J., Monteiro, R., Anderson, K., Brickman, J. (2019) Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development (Cambridge) 146.
<https://doi.org/10.1242/dev.180620>
10. 2018) Pluripotent stem cells in developmental toxicity testing: a review of methodological advances. Toxicol. Sci. 165, 31-39.
< , A., Tokar, E. (https://doi.org/10.1093/toxsci/kfy174>
11. 2013) Differentiation of hepatocytes from pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 26, 1G.4.1-1G.4.13
< , S., Duncan, S. (https://doi.org/10.1002/9780470151808.sc01g04s26>
12. 2000) Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev. 11, 177-183.
< , A., Kinoshita, T., Tanaka, M., Kamiya, A., Mukouyama, Y., Hara, T. (https://doi.org/10.1016/S1359-6101(00)00003-4>
13. 2020) In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Arch. Pharm. Res. 43, 877-889.
< , K., Yi, S., Jang, H., Han, J., Lee, J. (https://doi.org/10.1007/s12272-020-01260-z>
14. 2018) Development of the liver: Insights into organ and tissue morphogenesis. J. Hepatol. 68, 1049-1062.
< , E., Lemaigre, F. (https://doi.org/10.1016/j.jhep.2018.01.005>
15. 2005) Immunohistochemical analysis of cytokeratin 7 expression in resting and proliferating biliary structures of rat liver. Hepatology 42, 863-870.
< , S., Dezső, K., Kopper, L., Nagy, P. (https://doi.org/10.1002/hep.20858>
16. 2006) Assessment of pluripotency and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells. Cell Prolif. 39, 585-598.
< , R., Ravindran, G. (https://doi.org/10.1111/j.1365-2184.2006.00400.x>
17. 1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res. 35, 585-602.
< , S., Lee, V. (https://doi.org/10.1002/jnr.490350603>
18. 2019) Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury. Biochim. Biophys. Acta Gen. Subj. 1863, 129300.
< , L., Aschner, M., Bowman, A. (https://doi.org/10.1016/j.bbagen.2019.02.002>
19. 2019) Induced pluripotent stem cells in disease modelling and drug discovery. Nature Rev Genet. 20, 377-388.
< , R., Daley, G. (https://doi.org/10.1038/s41576-019-0100-z>
20. 1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699-702.
< , C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E., Birchmeler, C. (https://doi.org/10.1038/373699a0>
21. 2005) NTERA2: a model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells Dev. 14, 517-534.
< , C., Spivak, C., Baker, S., McDaniel, T., Loring, J., Nguyen, C., Chrest, F., Wersto, R., Arenas, E., Zeng, X., Freed, W., Rao, M. (https://doi.org/10.1089/scd.2005.14.517>
22. 2015) Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports 4, 939-952.
< , R., Greenhough, S., Naumovska, E., Sullivan, G. (https://doi.org/10.1016/j.stemcr.2015.04.001>
23. 2019) An in vitro developmental neurotoxicity screening assay for retinoic acid-induced neuronal differentiation using the human NT2/D1 cell line. Neurotoxicology 73, 258-264.
< , M., Kan, H., Gollapudi, B., Marty, M. (https://doi.org/10.1016/j.neuro.2019.04.005>
24. 2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc. Natl. Acad. Sci. USA 108, 9875-9880.
< , S., Kitada, M., Kuroda, Y., Shigemoto, T., Matsuse, D., Akashi, H., Tanimura, Y., Tsuchiyama, K., Kikuchi, T., Goda, M., Nakahata, T., Fujiyoshi, Y., Dezawa, M. (https://doi.org/10.1073/pnas.1100816108>
25. 2012) Tissue transglutaminase (TG2) activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line. Braz. J. Med. Biol. Res. 45, 693-700.
< X, Chen Z, Liu Z, Song C. (https://doi.org/10.1590/S0100-879X2012007500060>
26. 2020) Angiocrine hepatocyte growth factor signaling controls physiological organ and body size and dynamic hepatocyte proliferation to prevent liver damage during regeneration. Am. J. Pathol. 190, 358-371.
< , X., Olsavszky, V., Yin, Y., Wang, B., Engleitner, T., Öllinger, R., Schledzewski, K., Koch, P., Rad, R., Schmid, R., Friess, H., Goerdt, S., Hüser, N., Géraud, C., von Figura, G., Hartmann, D. (https://doi.org/10.1016/j.ajpath.2019.10.009>
27. 2019) Combined use of bFGF/EGF and alltrans- retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci. Lett. 690, 61-68.
< , H., Zuo, X., Ren, L., Li, Y., Tai, H., Du, J., Xie, X., Zhang, X., Han, Y., Wu, Y., Yang, C., Xu, Z., Hong, H., Li, S., Su, B. (https://doi.org/10.1016/j.neulet.2018.10.002>