Fol. Biol. 2021, 67, 191-198

https://doi.org/10.14712/fb2021067050191

JAB1 Promotes High Glucose-Induced Inflammation and Extracellular Matrix Deposition in Glomerular Mesangial Cells by Regulating Angiopoietin-Like Protein 2

P. Zhu1, Yihua Wu2, Y. Gu3, C. Li1

1Department of General Practice, Shanghai International Medical Center, Shanghai, China
2Department of Endocrinology, Shanghai International Medical Center, Shanghai, China
3Department of Internal Medicine, Shanghai International Medical Center, Shanghai, China

Received September 2021
Accepted December 2021

References

1. Alsaad, K. O., Herzenberg, A. M. (2007) Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J. Clin. Pathol. 60, 18-26. <https://doi.org/10.1136/jcp.2005.035592>
2. Bai, J., Wang, Y., Zhu, X., Shi, J. (2019) Eriodictyol inhibits high glucose-induced extracellular matrix accumulation, oxidative stress, and inflammation in human glomerular mesangial cells. Phytother. Res. 33, 2775-2782. <https://doi.org/10.1002/ptr.6463>
3. Bartlett, C. S., Scott, R. P., Carota, I. A., Wnuk, M. L., Kanwar, Y. S., Miner, J. H., Quaggin, S. E. (2017) Glomerular mesangial cell recruitment and function require the co-receptor neuropilin-1. Am. J. Physiol. Renal Physiol. 313, F1232-F1242. <https://doi.org/10.1152/ajprenal.00311.2017>
4. Chen, F., Zhu, X., Sun, Z., Ma, Y. (2018) Astilbin inhibits high glucose-induced inflammation and extracellular matrix accumulation by suppressing the TLR4/MyD88/NF-κB pathway in rat glomerular mesangial cells. Front. Pharmacol. 9, 1187. <https://doi.org/10.3389/fphar.2018.01187>
5. Chun, Y., Lee, M., Park, B., Lee, S. (2013) CSN5/JAB1 interacts with the centromeric components CENP-T and CENPW and regulates their proteasome-mediated degradation. J. Biol. Chem. 288, 27208-27219. M113.469221 <https://doi.org/10.1074/jbc>
6. Dugbartey, G. J. (2017) Diabetic nephropathy: A potential savior with ‘rotten-egg’ smell. Pharmacol. Rep. 69, 331- 339. <https://doi.org/10.1016/j.pharep.2016.11.004>
7. Fakhruddin, S., Alanazi, W., Jackson, K. E. (2017) Diabetesinduced reactive oxygen species: mechanism of their generation and role in renal injury. J. Diabetes Res. 2017, 8379327. <https://doi.org/10.1155/2017/8379327>
8. Han, Q., Zhu, H., Chen, X., Liu, Z. (2017) Non-genetic mechanisms of diabetic nephropathy. Front. Med. 11, 319-332. <https://doi.org/10.1007/s11684-017-0569-9>
9. Huang, H., Ni, H., Ma, K., Zou, J. (2019) ANGPTL2 regulates autophagy through the MEK/ERK/Nrf-1 pathway and affects the progression of renal fibrosis in diabetic nephropathy. Am. J. Transl. Res. 11, 5472-5486.
10. Kanasaki, K., Taduri, G., Koya, D. (2013) Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front. Endocrinol. 4, 7. <https://doi.org/10.3389/fendo.2013.00007>
11. Konishi, M., Furuya, F., Oku, T., Takamura, T., Kitamura, K. (2017) Serum angiopoietin like 2 and progression of diabetic nephropathy. Nephrol. Dial. Transpl. 32 (Suppl. 3), iii614. <https://doi.org/10.1093/ndt/gfx174.MP507>
12. Lim, A. (2014) Diabetic nephropathy – complications and treatment. Int. J. Nephrol. Renov. 7, 361-381. <https://doi.org/10.2147/IJNRD.S40172>
13. Pan, Y., Zhang, Q., Tian, L., Wang, X., Fan, X., Zhang, H., Claret, F. X., Yang, H. (2012) Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res. 72, 1890-1900. <https://doi.org/10.1158/0008-5472.CAN-11-3472>
14. Parveen, A., Jin, M., Kim, S. Y. (2018) Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. Phytomedicine 39, 146-159. <https://doi.org/10.1016/j.phymed.2017.12.018>
15. Rao, H., Jalali, J. A., Johnston, T. P., Koulen, P. (2021) Emerging roles of dyslipidemia and hyperglycaemia in diabetic retinopathy: molecular mechanisms and clinical perspectives. Front. Endocrinol. 12, 620045. <https://doi.org/10.3389/fendo.2021.620045>
16. Samsu, N. (2021) Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed. Res. Int. 2021, 1497449. <https://doi.org/10.1155/2021/1497449>
17. Schwarz, A., Bonaterra, G. A., Schwarzbach, H., Kinscherf, R. (2017) Oxidized LDL-induced JAB1 influences NF-κB independent inflammatory signaling in human macrophages during foam cell formation. J. Biomed. Sci. 24, 12. <https://doi.org/10.1186/s12929-017-0320-5>
18. Shackleford, T. J., Claret, F. X. (2010) JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div. 5, 26. <https://doi.org/10.1186/1747-1028-5-26>
19. Sulaiman, M. K. (2019) Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetol. Metab. Syndr. 11, 7. <https://doi.org/10.1186/s13098-019-0403-4>
20. Sun, H., Zheng, J., Chen, S., Zeng, C., Liu, Z., Li, L. (2007) Enhanced expression of ANGPTL2 in the microvascular lesions of diabetic glomerulopathy. Nephron. Exp. Nephrol. 105, e117-123. <https://doi.org/10.1159/000100493>
21. Thorin-Trescases, N., Thorin, E. (2014) Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev. Mol. Med. 16, e17. <https://doi.org/10.1017/erm.2014.19>
22. Tung, C.-W., Hsu, Y.-C., Shih, Y.-H., Chang, P.-J., Lin, C.-L. (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 23, 32-37. <https://doi.org/10.1111/nep.13451>
23. Wang, L., Zheng, J.-N., Pei, D.-S. (2016) The emerging roles of Jab1/CSN5 in cancer. Med. Oncol. 33, 90. <https://doi.org/10.1007/s12032-016-0805-1>
24. Wang, X., Wu, T., Ma, H., Huang, X., Huang, K., Ye, C., Zhu, S. (2021) VX-765 ameliorates inflammation and extracellular matrix accumulation by inhibiting the NOX1/ROS/ NF-κB pathway in diabetic nephropathy. J. Pharm. Pharmacol. rgab112. <https://doi.org/10.1093/jpp/rgab112>
25. Xiao, H., Claret, F. X., Shen, Q. (2019) The novel Jab1 inhibitor CSN5i-3 suppresses cell proliferation and induces apoptosis in human breast cancer cells. Neoplasma 66, 481-486. <https://doi.org/10.4149/neo_2018_181016n772>
26. Xie, P., Wang, H., Fang, J., Du, D., Tian, Z., Zhen, J., Liu, Y., Ding, Y., Fu, B., Liu, F., Huang, D., Yu, J. (2021) CSN5 promotes carcinogenesis of thyroid carcinoma cells through ANGPTL2. Endocrinology 162, bqaa206. <https://doi.org/10.1210/endocr/bqaa206>
27. Yang, S., Zhang, J., Wang, S., Shi, J., Zhao, X. (2017) Knockdown of angiopoietin-like protein 2 ameliorates diabetic nephropathy by inhibiting TLR4. Cell. Physiol. Biochem. 43, 685-696. <https://doi.org/10.1159/000480654>
28. Yang, X., Wang, Y., Gao, G. (2016) High glucose induces rat mesangial cells proliferation and MCP-1 expression via ROS-mediated activation of NF-κB pathway, which is inhibited by eleutheroside E. J. Recept. Sig. Transd. 36, 152-157. <https://doi.org/10.3109/10799893.2015.1061002>
29. Zhang, S., Hong, Z., Chai, Y., Liu, Z., Du, Y., Li, Q., Liu, Q. (2017) CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochem. Biophys. Res. Commun. 488, 101-108. <https://doi.org/10.1016/j.bbrc.2017.05.016>
30. Zhao, Y., Ma, S., Hu, X., Feng, M., Xiang, R., Li, M., Liu, C., Lu, T., Huang, A., Chen, J., Wu, M., Lu, H. (2020) JAB1 promotes palmitate-induced insulin resistance via ERK pathway in hepatocytes. J. Physiol. Biochem. 76, 655-662. <https://doi.org/10.1007/s13105-020-00770-0>
31. Zhou, F., Pan, Y., Wei, Y., Zhang, R., Bai, G., Shen, Q., Meng, S., Le, X.-F., Andreeff, M., Claret, F. X. (2017) Jab1/Csn5- thioredoxin signaling in relapsed acute monocytic leukaemia under oxidative stress. Clin. Cancer Res. 23, 4450- 4461. <https://doi.org/10.1158/1078-0432.CCR-16-2426>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive