Fol. Biol. 2021, 67, 191-198
https://doi.org/10.14712/fb2021067050191
JAB1 Promotes High Glucose-Induced Inflammation and Extracellular Matrix Deposition in Glomerular Mesangial Cells by Regulating Angiopoietin-Like Protein 2
References
1. Alsaad, K. O., Herzenberg, A. M. (2007) Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J. Clin. Pathol. 60, 18-26.
<https://doi.org/10.1136/jcp.2005.035592>
2. Bai, J., Wang, Y., Zhu, X., Shi, J. (2019) Eriodictyol inhibits high glucose-induced extracellular matrix accumulation, oxidative stress, and inflammation in human glomerular mesangial cells. Phytother. Res. 33, 2775-2782.
<https://doi.org/10.1002/ptr.6463>
3. Bartlett, C. S., Scott, R. P., Carota, I. A., Wnuk, M. L., Kanwar, Y. S., Miner, J. H., Quaggin, S. E. (2017) Glomerular mesangial cell recruitment and function require the co-receptor neuropilin-1. Am. J. Physiol. Renal Physiol. 313, F1232-F1242.
<https://doi.org/10.1152/ajprenal.00311.2017>
4. Chen, F., Zhu, X., Sun, Z., Ma, Y. (2018) Astilbin inhibits high glucose-induced inflammation and extracellular matrix accumulation by suppressing the TLR4/MyD88/NF-κB pathway in rat glomerular mesangial cells. Front. Pharmacol. 9, 1187.
<https://doi.org/10.3389/fphar.2018.01187>
5. Chun, Y., Lee, M., Park, B., Lee, S. (2013) CSN5/JAB1 interacts with the centromeric components CENP-T and CENPW and regulates their proteasome-mediated degradation. J. Biol. Chem. 288, 27208-27219. M113.469221
<https://doi.org/10.1074/jbc>
6. Dugbartey, G. J. (2017) Diabetic nephropathy: A potential savior with ‘rotten-egg’ smell. Pharmacol. Rep. 69, 331- 339.
<https://doi.org/10.1016/j.pharep.2016.11.004>
7. Fakhruddin, S., Alanazi, W., Jackson, K. E. (2017) Diabetesinduced reactive oxygen species: mechanism of their generation and role in renal injury. J. Diabetes Res. 2017, 8379327.
<https://doi.org/10.1155/2017/8379327>
8. Han, Q., Zhu, H., Chen, X., Liu, Z. (2017) Non-genetic mechanisms of diabetic nephropathy. Front. Med. 11, 319-332.
<https://doi.org/10.1007/s11684-017-0569-9>
9. 2019) ANGPTL2 regulates autophagy through the MEK/ERK/Nrf-1 pathway and affects the progression of renal fibrosis in diabetic nephropathy. Am. J. Transl. Res. 11, 5472-5486.
, H., Ni, H., Ma, K., Zou, J. (
10. Kanasaki, K., Taduri, G., Koya, D. (2013) Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front. Endocrinol. 4, 7.
<https://doi.org/10.3389/fendo.2013.00007>
11. Konishi, M., Furuya, F., Oku, T., Takamura, T., Kitamura, K. (2017) Serum angiopoietin like 2 and progression of diabetic nephropathy. Nephrol. Dial. Transpl. 32 (Suppl. 3), iii614.
<https://doi.org/10.1093/ndt/gfx174.MP507>
12. Lim, A. (2014) Diabetic nephropathy – complications and treatment. Int. J. Nephrol. Renov. 7, 361-381.
<https://doi.org/10.2147/IJNRD.S40172>
13. Pan, Y., Zhang, Q., Tian, L., Wang, X., Fan, X., Zhang, H., Claret, F. X., Yang, H. (2012) Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res. 72, 1890-1900.
<https://doi.org/10.1158/0008-5472.CAN-11-3472>
14. Parveen, A., Jin, M., Kim, S. Y. (2018) Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. Phytomedicine 39, 146-159.
<https://doi.org/10.1016/j.phymed.2017.12.018>
15. Rao, H., Jalali, J. A., Johnston, T. P., Koulen, P. (2021) Emerging roles of dyslipidemia and hyperglycaemia in diabetic retinopathy: molecular mechanisms and clinical perspectives. Front. Endocrinol. 12, 620045.
<https://doi.org/10.3389/fendo.2021.620045>
16. Samsu, N. (2021) Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed. Res. Int. 2021, 1497449.
<https://doi.org/10.1155/2021/1497449>
17. Schwarz, A., Bonaterra, G. A., Schwarzbach, H., Kinscherf, R. (2017) Oxidized LDL-induced JAB1 influences NF-κB independent inflammatory signaling in human macrophages during foam cell formation. J. Biomed. Sci. 24, 12.
<https://doi.org/10.1186/s12929-017-0320-5>
18. Shackleford, T. J., Claret, F. X. (2010) JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div. 5, 26.
<https://doi.org/10.1186/1747-1028-5-26>
19. Sulaiman, M. K. (2019) Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetol. Metab. Syndr. 11, 7.
<https://doi.org/10.1186/s13098-019-0403-4>
20. Sun, H., Zheng, J., Chen, S., Zeng, C., Liu, Z., Li, L. (2007) Enhanced expression of ANGPTL2 in the microvascular lesions of diabetic glomerulopathy. Nephron. Exp. Nephrol. 105, e117-123.
<https://doi.org/10.1159/000100493>
21. Thorin-Trescases, N., Thorin, E. (2014) Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev. Mol. Med. 16, e17.
<https://doi.org/10.1017/erm.2014.19>
22. Tung, C.-W., Hsu, Y.-C., Shih, Y.-H., Chang, P.-J., Lin, C.-L. (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 23, 32-37.
<https://doi.org/10.1111/nep.13451>
23. Wang, L., Zheng, J.-N., Pei, D.-S. (2016) The emerging roles of Jab1/CSN5 in cancer. Med. Oncol. 33, 90.
<https://doi.org/10.1007/s12032-016-0805-1>
24. Wang, X., Wu, T., Ma, H., Huang, X., Huang, K., Ye, C., Zhu, S. (2021) VX-765 ameliorates inflammation and extracellular matrix accumulation by inhibiting the NOX1/ROS/ NF-κB pathway in diabetic nephropathy. J. Pharm. Pharmacol. rgab112.
<https://doi.org/10.1093/jpp/rgab112>
25. Xiao, H., Claret, F. X., Shen, Q. (2019) The novel Jab1 inhibitor CSN5i-3 suppresses cell proliferation and induces apoptosis in human breast cancer cells. Neoplasma 66, 481-486.
<https://doi.org/10.4149/neo_2018_181016n772>
26. Xie, P., Wang, H., Fang, J., Du, D., Tian, Z., Zhen, J., Liu, Y., Ding, Y., Fu, B., Liu, F., Huang, D., Yu, J. (2021) CSN5 promotes carcinogenesis of thyroid carcinoma cells through ANGPTL2. Endocrinology 162, bqaa206.
<https://doi.org/10.1210/endocr/bqaa206>
27. Yang, S., Zhang, J., Wang, S., Shi, J., Zhao, X. (2017) Knockdown of angiopoietin-like protein 2 ameliorates diabetic nephropathy by inhibiting TLR4. Cell. Physiol. Biochem. 43, 685-696.
<https://doi.org/10.1159/000480654>
28. Yang, X., Wang, Y., Gao, G. (2016) High glucose induces rat mesangial cells proliferation and MCP-1 expression via ROS-mediated activation of NF-κB pathway, which is inhibited by eleutheroside E. J. Recept. Sig. Transd. 36, 152-157.
<https://doi.org/10.3109/10799893.2015.1061002>
29. Zhang, S., Hong, Z., Chai, Y., Liu, Z., Du, Y., Li, Q., Liu, Q. (2017) CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochem. Biophys. Res. Commun. 488, 101-108.
<https://doi.org/10.1016/j.bbrc.2017.05.016>
30. Zhao, Y., Ma, S., Hu, X., Feng, M., Xiang, R., Li, M., Liu, C., Lu, T., Huang, A., Chen, J., Wu, M., Lu, H. (2020) JAB1 promotes palmitate-induced insulin resistance via ERK pathway in hepatocytes. J. Physiol. Biochem. 76, 655-662.
<https://doi.org/10.1007/s13105-020-00770-0>
31. Zhou, F., Pan, Y., Wei, Y., Zhang, R., Bai, G., Shen, Q., Meng, S., Le, X.-F., Andreeff, M., Claret, F. X. (2017) Jab1/Csn5- thioredoxin signaling in relapsed acute monocytic leukaemia under oxidative stress. Clin. Cancer Res. 23, 4450- 4461.
<https://doi.org/10.1158/1078-0432.CCR-16-2426>