Fol. Biol. 2021, 67, 199-207

https://doi.org/10.14712/fb2021067050199

MiR-503 Contributes to Glucocorticoid Sensitivity in Acute Lymphoblastic Leukaemia via Targeting WNT3A

C. Tian1, L. Liu1, M. Zheng2, Z. Ye1, R. Chen3, Xiang Lan1

1Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
2Department of Obstetrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
3Department of Paediatrics, Shunde Women’s and Children’s Hospital of Guangdong Medical University, Foshan, Guangdong Province, China

Received October 2021
Accepted December 2021

References

1. Autry, R. J., Paugh, S. W., Carter, R., Shi, L., Liu, J., Ferguson, D. C., Lau, C. E., Bonten, E. J., Yang, W., McCorkle, J. R., Beard, J. A., Panetta, J. C., Diedrich, J. D., Crews, K. R., Pei, D., Coke, C. J., Natarajan, S., Khatamian, A., Karol, S. E., Lopez-Lopez, E., Diouf, B., Smith, C., Gocho, Y., Hagiwara, K., Roberts, K. G., Pounds, S., Kornblau, S. M., Stock, W., Paietta, E. M., Litzow, M. R., Inaba, H., Mullighan, C. G., Jeha, S., Pui, C.-H., Cheng, C., Savic, D., Yu, J., Gawad, C., Relling, M. V., Yang, J. J., Evans, W. E. (2020) Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nat. Cancer 1, 329-344. <https://doi.org/10.1038/s43018-020-0037-3>
2. Chiarini, F., Paganelli, F., Martelli, A. M., Evangelisti, C. (2020) The role played by Wnt/β-catenin signaling pathway in acute lymphoblastic leukemia. Int. J. Mol. Sci. 21, 1098. <https://doi.org/10.3390/ijms21031098>
3. Dandekar, S., Romanos-Sirakis, E., Pais, F., Bhatla, T., Jones, C., Bourgeois, W., Hunger, S., Raetz, E., Hermiston, M., Dasgupta, R., Morrison, D., Carroll, W. (2014) Wnt inhibition leads to improved chemosensitivity in pediatric acute lymphoblastic leukemia. Br. J. Haematol. 167, 87-99. <https://doi.org/10.1111/bjh.13011>
4. Drobna, M., Szarzyńska-Zawadzka, B., Daca-Roszak, P., Kosmalska, M., Jaksik, R., Witt, M., Dawidowska, M. (2018) Identification of endogenous control miRNAs for RT-qPCR in T-cell acute lymphoblastic leukemia. Int. J. Mol. Sci. 19, 2858. <https://doi.org/10.3390/ijms19102858>
5. Evangelisti, C., Chiarini, F., Cappellini, A., Paganelli, F., Fini, M., Santi, S., Martelli, A. M., Neri, L. M., Evangelisti, C. (2020) Targeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-cell acute lymphoblastic leukemia. J. Cell. Physiol. 235, 5413-5428. <https://doi.org/10.1002/jcp.29429>
6. Forrest, A. R. R., Kanamori-Katayama, M., Tomaru, Y., Lassmann, T., Ninomiya, N., Takahashi, Y., de Hoon, M. J. L., Kubosaki, A., Kaiho, A., Suzuki, M., Yasuda, J., Kawai, J., Hayashizaki, Y., Hume, D. A., Suzuki, H. (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24, 460-466. <https://doi.org/10.1038/leu.2009.246>
7. Fu, J., Si, L., Zhuang, Y., Zhang, A., Sun, N., Li, D., Hao, B., Ju, X. (2019) Wnt/β‑catenin inhibition reverses multidrug resistance in pediatric acute lymphoblastic leukemia. Oncol. Rep. 41, 1387-1394. <https://doi.org/10.3892/or.2018.6902>
8. Han, S. H., Kim, S.-H., Hyoung-June, K., Yoonsung, L., Choi, S.-Y., Gyeongsin, P., Do-Hyun, K., Aram, L., Jongmin, K., Je-Min, C., Yonghwan, K., Kyungjae, M., Hongtae, K., Kim, D. W. (2017) Mir-424 and mir-503 regulates cobll1 expression during the CML progression. Blood 130 (Suppl. 1), 4177. <https://doi.org/10.1182/blood.V130.Suppl_1.4177.4177>
9. Huang, S., Fan, P., Zhang, C., Xie, J., Gu, X., Lei, S., Chen, Z., Huang, Z. (2021) Exosomal microRNA-503-3p derived from macrophages represses glycolysis and promotes mitochondrial oxidative phosphorylation in breast cancer cells by elevating DACT2. Cell Death Discov. 7, 119-119. <https://doi.org/10.1038/s41420-021-00492-2>
10. Hunger, S. P., Mullighan, C. G. (2015) Acute lymphoblastic leukemia in children. New Engl. J. Med. 373, 1541-1552. <https://doi.org/10.1056/NEJMra1400972>
11. Iijima, K., Kiyokawa, N. (2016) Analysis of gene expression and DNA methylation patterns in childhood acute lymphoblastic leukemia. Rinsho ketsueki - Jap. J. Clin. Hemat. 57, 425-429. (in Japanese). <https://doi.org/10.11406/rinketsu.57.425>
12. Imai, K. (2017) Acute lymphoblastic leukemia: pathophysiology and current therapy. Rinsho ketsueki – Jap. J. Clin. Hemat. 58, 460-470. (in Japanese). <https://doi.org/10.11406/rinketsu.58.460>
13. Jain, N., O’Brien, S., Thomas, D., Kantarjian, H. (2014) Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Front. Biosci. (Elite Ed.) 6, 40-45. <https://doi.org/10.2741/e688>
14. Li, Q., Li, C., Xi, S., Li, X., Ding, L., Li, M. (2019) The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med. Sci. 34, 607-614. <https://doi.org/10.1007/s10103-018-2636-0>
15. Li, W., Li, J., Mu, H., Guo, M., Deng, H. (2019) MiR-503 suppresses cell proliferation and invasion of gastric cancer by targeting HMGA2 and inactivating WNT signaling pathway. Cancer Cell Int. 19, 164. <https://doi.org/10.1186/s12935-019-0875-1>
16. Liang, Y.-N., Tang, Y.-L., Ke, Z.-Y., Chen, Y.-Q., Luo, X.-Q., Zhang, H., Huang, L.-B. (2017) MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J. Steroid Biochem. Mol. Biol. 172, 62-68. <https://doi.org/10.1016/j.jsbmb.2017.05.014>
17. Long, S., Ren, D., Zhong, F., Niu, Y., Qin, X., Mu, D., Liu, W. (2020) Reversal of glucocorticoid resistance in acute lymphoblastic leukemia cells by miR-145. PeerJ. 8, e9337. <https://doi.org/10.7717/peerj.9337>
18. Rainer, J., Ploner, C., Jesacher, S., Ploner, A., Eduardoff, M., Mansha, M., Wasim, M., Panzer-Grümayer, R., Trajanoski, Z., Niederegger, H., Kofler, R. (2009) Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 23, 746-752. <https://doi.org/10.1038/leu.2008.370>
19. Roy S., Sunkara, R. R., Parmar, M. Y., Shaikh, S., Waghmare, S. K. (2021) EMT imparts cancer stemness and plasticity: new perspectives and therapeutic potential. Front. Biosci. (Landmark Ed.) 26, 238-265. <https://doi.org/10.2741/4893>
20. Sakurai, N., Komada, Y., Hanaki, R., Morimoto, M., Ito, T., Nakato, D., Hirayama, M. (2019) Role of microRNAs in glucocorticoid‑resistant B‑cell precursor acute lymphoblastic leukemia. Oncol. Rep. 42, 708-716. <https://doi.org/10.3892/or.2019.7191>
21. Tissing, W. J. E., Meijerink, J. P. P., den Boer, M. L., Pieters, R. (2003) Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 17, 17-25. <https://doi.org/10.1038/sj.leu.2402733>
22. Xiao, F., Zhang, W., Chen, L., Chen, F., Xie, H., Xing, C., Yu, X., Ding, S., Chen, K., Guo, H., Cheng, J., Zheng, S., Zhou, L. (2013) MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma. J. Transl. Med. 11, 195-195. <https://doi.org/10.1186/1479-5876-11-195>
23. Yang, X., Zang, J., Pan, X., Yin, J., Xiang, Q., Yu, J., Gan, R., Lei, X. (2017) miR-503 inhibits proliferation making human hepatocellular carcinoma cells susceptible to 5‑fluorouracil by targeting EIF4E. Oncol. Rep. 37, 563-570. <https://doi.org/10.3892/or.2016.5220>
24. Zhang, Q. M., Ni, W. W., Li, Y., Zhang, X., Hou, J. C., Meng, X. C., Li, A. L., Jiang, Z. M. (2020) Analysis of altered miRNA profiling in the colon of a mouse model with β-lactoglobulin allergy. Allergol. Immunopathol. (Madr,) 48, 666-674. <https://doi.org/10.1016/j.aller.2020.05.007>
25. Zhou, B., Ma, R., Wenxia, S., Li, S., Xu, Y., Tu, X., Wang, Q. (2013) microRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 333, 159-169. <https://doi.org/10.1016/j.canlet.2013.01.028>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive