Fol. Biol. 2021, 67, 199-207

https://doi.org/10.14712/fb2021067050199

MiR-503 Contributes to Glucocorticoid Sensitivity in Acute Lymphoblastic Leukaemia via Targeting WNT3A

C. Tian1, L. Liu1, M. Zheng2, Z. Ye1, R. Chen3, Xiang Lan1

1Department of Paediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
2Department of Obstetrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
3Department of Paediatrics, Shunde Women’s and Children’s Hospital of Guangdong Medical University, Foshan, Guangdong Province, China

Received October 2021
Accepted December 2021

Abnormal accumulation of lymphoblasts in the blood and bone marrow is the main characteristic of acute lymphoblastic leukaemia (ALL). Glucocorticoids are effective drugs for ALL, while glucocorticoid resistance is an obstacle to ALL therapy. MicroRNAs (miRNAs) are implicated in the drug resistance and modulate the response of ALL to glucocorticoids. The role of miR-503 in glucocorticoid sensitivity of ALL was investigated in this study. Firstly, T-leukaemic cells were isolated from patients with ALL. The human ALL cell line (CCRF/CEM) was incubated with dexamethasone to establish a glucocorticoid- resistant ALL cell line (CCRF/CEM-R). Data from MTT showed that IC50 (50% inhibitory concentration) of dexamethasone in T-leukaemic cells isolated from glucocorticoid-resistant ALL patients or CCRF/CEM-R was increased compared with IC50 in T-leukaemic cells isolated from glucocorticoid- sensitive ALL patients or CCRF/CEM. MiR- 503 was down-regulated in glucocorticoid-resistant leukaemic cells and CCRF/CEM-R. Secondly, overexpression of miR-503 sensitized CCRF/CEM-R to dexamethasone. Moreover, over-expression of miR- 503 also promoted the sensitivity of ALL cells to dexamethasone. Thirdly, miR-503 bound to WNT3A mRNA and negatively regulated the expression of WNT3A. Over-expression of miR-503 reduced protein expression of nuclear β-catenin, and over-expression of WNT3A attenuated the miR-503 overexpression- induced decrease in nuclear β-catenin. Lastly, the over-expression of miR-503-induced increased sensitivity of ALL-resistant cells and CCRF/ CEM-R to dexamethasone was attenuated by overexpression of WNT3A. In conclusion, miR-503 targeted WNT3A mRNA to sensitize ALL cells to glucocorticoids through inactivation of the Wnt/β-catenin pathway.

Funding

This work was supported by a Science and Technology Project of Zhanjiang City (Grant No. 2020B01426).

References

25 live references