Fol. Biol. 2022, 68, 50-58

https://doi.org/10.14712/fb2022068020050

Validation of the Anti-Inflammatory Effect of Tenebrio Molitor Larva Oil in a Colitis Mouse Model

B. M. Park1, J. Lee2, Bock Gie Jung3, Bong Joo Lee1

1Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
2Biology Department at Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA
3Department of Pulmonary Immunology, Center for Pulmonary and Infectious Diseases Control, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA

Received December 2021
Accepted April 2022

References

1. Abraham, C., Cho, J. H. (2009) Inflammatory bowel disease. N. Engl. J. Med. 361, 2066-2078. <https://doi.org/10.1056/NEJMra0804647>
2. Adams, S. M., Bornemann, P. H. (2013) Ulcerative colitis. Am. Fam. Physician. 87, 699-705.
3. Alex, P., Zachos, N. C., Nguyen, T., Gonzales, L., Chen, T. E., Conklin, L. S., Centola, M., Li, X. (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 15, 341- 352. <https://doi.org/10.1002/ibd.20753>
4. Ananthakrishnan, A. N., Konijeti, H. K. G. G., Higuchi, L. M., Silva, P. D., Fuchs, C. S., Willett, W. C., Richter, J. M., Chan, A. T. (2014) Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease. Gut 63, 776-784. <https://doi.org/10.1136/gutjnl-2013-305304>
5. Aratani, Y. (2018) Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 640, 47-52. <https://doi.org/10.1016/j.abb.2018.01.004>
6. Baeuerle, P. A. (1998) Pro-inflammatory signaling: last pieces in the NF-κB puzzle? Curr. Biol. 8, 19-22. <https://doi.org/10.1016/S0960-9822(98)70010-7>
7. Berends, S. E., Strik, A. S., Löwenberg, M., D'Haens, G. R., Mathôt, R. A. A. (2019) Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet. 58, 15-37. <https://doi.org/10.1007/s40262-018-0676-z>
8. Blumberg, R. S. (2009) Inflammation in the intestinal tract: pathogenesis and treatment. Dig. Dis. 27, 455-464. <https://doi.org/10.1159/000235851>
9. Chassaing, B., Aitken, J. D., Malleshappa, M., Kumar, M. V. (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.1-15.25.14. <https://doi.org/10.1002/0471142735.im1525s104>
10. Cooper, H. S., Murthy, S. N., Shah, R. S., Sedergran, D. J. (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 69, 238-249.
11. Fernández, J., Fuente, V. G. D. L., García, M. T. F., Sánchez, J. G., Redondo, B. I., Villar, C. J., Lomb, F. (2020) A diet based on cured acorn-fed ham with oleic acid content promotes anti-inflammatory gut microbiota and prevents ulcerative colitis in an animal model. Lipids Health Dis. 19, 28. <https://doi.org/10.1186/s12944-020-01205-x>
12. Gajendran, M., Loganathan, P., Jimenez, G., Catinella, A. P., Ng, N., Umapathy, C., Ziade, N., Hashash, J. G. (2019) A comprehensive review and update on ulcerative colitis. Dis. Mon. 65, 1-37. <https://doi.org/10.1016/j.disamonth.2019.02.004>
13. Geremia, A., Biancheri, P., Allan, P., Corazza, G. R., Sabatino, A. D. (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 13, 3-10. <https://doi.org/10.1016/j.autrev.2013.06.004>
14. Głąbska, D., Guzek, D., Lech, G. (2019) Analysis of the nutrients and food products intake of Polish males with ulcerative colitis in remission. Nutrients 11, 1-12. <https://doi.org/10.3390/nu11102333>
15. Kim, J. J., Shajib, M. D. S., Manocha, M. M., Khan, W. I. (2012) Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. 1, 3678. <https://doi.org/10.3791/3678>
16. Kim, S. H., Hong, J. H., Yang, W. K., Kim, H. J., An, H. J., Lee, Y. C. (2021) Cryptotympana pustulata extract and its main active component, oleic acid, inhibit ovalbumin-induced allergic airway inflammation through inhibition of Th2/GATA-3 and interleukin-17/RORγt signaling pathways in asthmatic mice. Molecules 26, 1854. <https://doi.org/10.3390/molecules26071854>
17. Kotsiou, O. S., Gourgoulianis, K. I. (2019) A case report of mesalazine-induced lung injury: a reversible drug side effect. Respir. Med. Case Rep. 27, 100865. <https://doi.org/10.1016/j.rmcr.2019.100865>
18. Krawisz, J., Sharon, P., Stenson, W. F. (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87, 1344-1350. <https://doi.org/10.1016/0016-5085(84)90202-6>
19. Lawrence, T. (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651. <https://doi.org/10.1101/cshperspect.a001651>
20. Li, N., Xiong, X., Ha, X., Wei, X. (2019) Comparative preservation effect of water-soluble and insoluble chitosan from Tenebrio molitor waste. Int. J. Biol. Macromol. 133, 165- 171. <https://doi.org/10.1016/j.ijbiomac.2019.04.094>
21. Liang, H., Yang, H., Liu, C., Sun, Z., Wang, X. (2018) Effect of NF-kB signaling pathway on the expression of MIF, TNF-α, IL-6 in the regulation of intervertebral disc degeneration. J. Musculoskelet. Neuronal Interact. 18, 551-556.
22. Makarov, S. S. (2000) NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6, 441-448. <https://doi.org/10.1016/S1357-4310(00)01814-1>
23. Mohamed, M. E., Elsayed, S. A., Madkor, H. R., Eldien, H. M. S., Mohafez, O. M. (2021) Yarrow oil ameliorates ulcerative colitis in mice model via regulating the NF-κB and PPAR-γ pathways. Intest. Res. 19, 194-205. <https://doi.org/10.5217/ir.2020.00021>
24. Murakami, S., Tasaka, Y., Takatori, S., Tanaka, A., Kawasaki, H., Araki, H. (2018) Effect of Eucommia ulmoides leaf extract on chronic dextran sodium sulfate-induced colitis in mice. Biol. Pharm. Bull. 41, 864-868. <https://doi.org/10.1248/bpb.b17-00878>
25. Nadpara, N., Reichenbach, Z. W., Ehrlich, A. C., Friedenberg, F. (2020) Current status of medical therapy for inflammatory bowel disease: the wealth of medications. Dig. Dis. Sci. 65, 2769-2779. <https://doi.org/10.1007/s10620-020-06471-4>
26. Ndrepepa, G. (2019) Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta 493, 36-51. <https://doi.org/10.1016/j.cca.2019.02.022>
27. Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., Wu, X. (2022) Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 62, 3499-3508. <https://doi.org/10.1080/10408398.2020.1867053>
28. Parian, A., Limketkai, B. N. (2016) Dietary supplement therapies for inflammatory bowel disease: Crohn's disease and ulcerative colitis. Curr. Pharm. Des. 22, 180-188. <https://doi.org/10.2174/1381612822666151112145033>
29. Park, J. S., Choi, J. W., Hwang, S. H., Kim, J. K., Kim, E. K., Lee, S. Y., Lee, B. I., Park, S. H., Cho, M. L. (2019) Cottonseed oil protects against intestinal inflammation in dextran sodium sulfate-induced inflammatory bowel disease. J. Med. Food 22, 672-679. <https://doi.org/10.1089/jmf.2018.4323>
30. Sann, H., Erichsen, J. V., Hessmann, M., Pahl, A., Hoffmeyer, A. (2013) Efficacy of drugs used in the treatment of IBD and combinations thereof in acute DSS-induced colitis in mice. Life Sci. 92, 708-718. <https://doi.org/10.1016/j.lfs.2013.01.028>
31. Son, Y. J., Choi, S. Y., Hwang, I. K., Nho, C. W., Kim, S. H. (2020) Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods 9, 40-53. <https://doi.org/10.3390/foods9010040>
32. Tanideh, N., Sadeghi, F., Amanat, S., Firoozi, D., Noorafshan, A., Iraji, A., Koohi-Hosseinabadi, O. (2020) Protection by pure and genistein fortified extra virgin olive oil, canola oil, and rice bran oil against acetic acid-induced ulcerative colitis in rats. Food Funct. 11, 860-870. <https://doi.org/10.1039/C9FO01951K>
33. Xavier, R. J., Podolsky, D. K. (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427-434. <https://doi.org/10.1038/nature06005>
34. Xu, X., Lin, S., Yang, Y., Gong, X., Tong, J., Li, K., Li, Y. (2020) Histological and ultrastructural changes of the colon in dextran sodium sulfate-induced mouse colitis. Exp. Ther. Med. 20, 1987-1994. <https://doi.org/10.3892/etm.2020.8946>
35. Yamamoto, Y., Gaynor, R. B. (2004) IκB kinases: key regulators of the NF-κB pathway. Trends Biochem. Sci. 29, 72-79. <https://doi.org/10.1016/j.tibs.2003.12.003>
36. Yoda, K., Miyazawa, K., Hosoda, M., Hiramatsu, M., Yan, F., He, F. (2014) Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur. J. Nutr. 53, 105-115. <https://doi.org/10.1007/s00394-013-0506-x>
37. Yorulmaz, E., Yorulmaz, H., Gökmen, E. S., Altınay, S., Küçük, S. H., Zengi, O., Çelik, D. S., Şit, D. (2019) Therapeutic effectiveness of rectally administered fish oil and mesalazine in trinitrobenzenesulfonic acid-induced colitis. Biomed. Pharmacother. 118, 1-7. <https://doi.org/10.1016/j.biopha.2019.109247>
38. Zhao, X., Gutiérrez, J. L. V., Johansson, D. P., Landberg, R., Langton, M. (2016) Yellow mealworm protein for food purposes - extraction and functional properties. PLoS One 11, 1-17. <https://doi.org/10.1371/journal.pone.0147791>
39. Zielińska, E., Baraniak, B., Karaś, M. (2017) Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9, 1-14. <https://doi.org/10.3390/nu9090970>
40. Zusso, M., Lunardi, V., Franceschini, D., Pagetta, A., Lo, R., Stifani, S., Frigo, A. C., Giusti, P., Moro, S. (2019) Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J. Neuroinflammation 16, 148-159. <https://doi.org/10.1186/s12974-019-1538-9>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive