Fol. Biol. 2022, 68, 72-77
https://doi.org/10.14712/fb2022068020072
TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways
References
1. de Iongh, R. U., Wederell, E., Lovicu, F. J., McAvoy, J. W. (2005) Transforming growth factor-β-induced epithelialmesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179, 43-55.
<https://doi.org/10.1159/000084508>
2. Flanders, K. C. (2004) Smad3 as a mediator of the fibrotic response. Int. J. Exp. Pathol. 85, 47-64.
<https://doi.org/10.1111/j.0959-9673.2004.00377.x>
3. Gonzalez, D. M., Medici, D. (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8.
<https://doi.org/10.1126/scisignal.2005189>
4. Hanano, T., Hara, Y., Shi, J., Morita, H., Umebayashi, C., Mori, E., Sumimoto, H., Ito, Y., Mori, Y., Inoue, R. (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J. Pharmacol. Sci. 95, 403-419.
<https://doi.org/10.1254/jphs.FP0040273>
5. Hu, H. H., Chen, D. Q., Wang, Y. N., Feng, Y. L., Cao, G., Vaziri, N. D., Zhao, Y. Y. (2018) New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 292, 76-83.
<https://doi.org/10.1016/j.cbi.2018.07.008>
6. Liu, H., Jiang, B. (2020) Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-β2-induced human lens epithelial cells. J. Biosci. 45, 59.
<https://doi.org/10.1007/s12038-020-0001-5>
7. 2008) The progress of epithelial-mesenchymal transition in ophthalmology. Zhonghua Yan Ke Za Zhi 44, 285-288. (in Chinese)
, T., Dong, X. G. (
8. Liu, Y. C., Wilkins, M., Kim, T., Malyugin, B., Mehta, J. S. (2017) Cataracts. Lancet 390, 600-612.
<https://doi.org/10.1016/S0140-6736(17)30544-5>
9. Lovicu, F. J., Shin, E. H., McAvoy, J. W. (2016) Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp. Eye Res. 142, 92-101.
<https://doi.org/10.1016/j.exer.2015.02.004>
10. Massagué, J., Seoane, J., Wotton, D. (2005) Smad transcription factors. Genes Dev. 19, 2783-2810.
<https://doi.org/10.1101/gad.1350705>
11. Menapace, R. (2008) Posterior capsulorhexis combined with optic buttonholing: an alternative to standard in-the-bag implantation of sharp-edged intraocular lenses? A critical analysis of 1000 consecutive cases. Graefes Arch. Clin. Exp. Ophthalmol. 246, 787-801.
<https://doi.org/10.1007/s00417-008-0779-6>
12. Roberts, A. B., Tian, F., Byfield, S. D., Stuelten, C., Ooshima, A., Saika, S., Flanders, K. C. (2006) Smad3 is key to TGF- β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 17, 19-27.
<https://doi.org/10.1016/j.cytogfr.2005.09.008>
13. Shu, D. Y., Lovicu, F. J. (2017) Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog. Retin. Eye Res. 60, 44-65.
<https://doi.org/10.1016/j.preteyeres.2017.08.001>
14. Xu, T., Wu, B. M., Yao, H. W., Meng, X. M., Huang, C., Ni, M. M., Li, J. (2015) Novel insights into TRPM7 function in fibrotic diseases: a potential therapeutic target. J. Cell. Physiol. 230, 1163-1169.
<https://doi.org/10.1002/jcp.24801>
15. Zhang, R. P., Xie, Z. G. (2020) Research progress of drug prophylaxis for lens capsule opacification after cataract surgery. J. Ophthalmol. 2020, 2181685.
<https://doi.org/10.1155/2020/2181685>