Fol. Biol. 2022, 68, 78-85

https://doi.org/10.14712/fb2022068020078

MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B

W. Yan, Y. Feng, Z. Lei, W. Kuang, Chaozhong Long

The First Affiliated Hospital, Department of Cardiovascular Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China

Received April 2022
Accepted August 2022

References

1. Bai, H., Yang, B., Yu, W., Xiao, Y., Yu, D., Zhang, Q. (2018) Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp. Cell Res. 362, 180-187. <https://doi.org/10.1016/j.yexcr.2017.11.015>
2. Bao, J., Ye, C., Zheng, Z., Zhou, Z. (2018) Fmr1 protects cardiomyocytes against lipopolysaccharide-induced myocardial injury. Exp. Ther. Med. 16, 1825-1833. <https://doi.org/10.3892/etm.2018.6386>
3. Chang, W., Feng, M., Li, Y., Sun, Y., Sun, L. (2019) MKP1 overexpression reduces TNF-α-induced cardiac injury via suppressing mitochondrial fragmentation and inhibiting the JNK-MIEF1 pathways. J. Cell. Physiol. 2019, 1-12. <https://doi.org/10.1002/jcp.28273>
4. Chen, W., Gao, G., Yan, M., Yu, M., Shi, K., Yang, P. (2021) Long noncoding RNA MAPKAPK5-AS1 promoted lipopolysaccharide- induced inflammatory damage in the myocardium by sponging microRNA-124-3p/E2F3. Mol. Med. 27, 131. <https://doi.org/10.1186/s10020-021-00385-1>
5. Ge, C., Liu, J., Dong, S. (2018) miRNA-214 protects sepsisinduced myocardial injury. Shock 50, 112-118. <https://doi.org/10.1097/SHK.0000000000000978>
6. Gölz, L., Memmert, S., Rath-Deschner, B., Jäger, A., Appel, T., Baumgarten, G., Götz, W., Frede, S. (2014) LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediators Inflamm. 2014, 986264. <https://doi.org/10.1155/2014/986264>
7. Gong, L., Xu, H., Zhang, X., Zhang, T., Shi, J., Chang, H. (2019) Oridonin relieves hypoxia-evoked apoptosis and autophagy via modulating microRNA-214 in H9c2 cells. Artif. Cells Nanomed. Biotechnol. 47, 2585-2592. <https://doi.org/10.1080/21691401.2019.1628037>
8. Haileselassie, B., Mukherjee, R., Joshi, A. U., Napier, B. A., Massis, L. M., Ostberg, N. P., Queliconi, B. B., Monack, D., Bernstein, D., Mochly-Rosen, D. (2019) Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J. Mol. Cell. Cardiol. 130, 160-169. <https://doi.org/10.1016/j.yjmcc.2019.04.006>
9. Hinkelbein, J., Böhm, L., Braunecker, S., Adler, C., De Robertis, E., Cirillo, F. (2017) Decreased tissue COX5B expression and mitochondrial dysfunction during sepsis-induced kidney injury in rats. Oxid. Med. Cell. Longev. 2017, 8498510. <https://doi.org/10.26226/morressier.58f5b031d462b80296c9d42f>
10. Ho, J., Chan, H., Wong, S. H., Wang, M. H., Yu, J., Xiao, Z., Liu, X., Choi, G., Leung, C. C., Wong, W. T., Li, Z., Gin, T., Chan, M. T., Wu, W. K. (2016) The involvement of regulatory non-coding RNAs in sepsis: a systematic review. Crit. Care 20, 383. <https://doi.org/10.1186/s13054-016-1555-3>
11. L'Heureux, M., Sternberg, M., Brath, L., Turlington, J., Kashiouris, M. G. (2020) Sepsis-induced cardiomyopathy: a comprehensive review. Curr. Cardiol. Rep. 22, 35. <https://doi.org/10.1007/s11886-020-01277-2>
12. Landesberg, G., Gilon, D., Meroz, Y., Georgieva, M., Levin, P. D., Goodman, S., Avidan, A., Beeri, R., Weissman, C., Jaffe, A. S., Sprung, C. L. (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur. Heart J. 33, 895-903. <https://doi.org/10.1093/eurheartj/ehr351>
13. Lelubre, C., Vincent, J. L. (2018) Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 14, 417-427. <https://doi.org/10.1038/s41581-018-0005-7>
14. Li, M., Zhang, Z., Liu, B., Chen, L., Wang, M. (2022) LncRNA GAS5 upregulates miR-214 through methylation to participate in cell apoptosis of sepsis. Arch. Physiol. Biochem. 128, 1259-1264. <https://doi.org/10.1080/13813455.2020.1764051>
15. Liow, K. Y., Chow, S. C. (2018) The cathepsin B inhibitor z- FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol. 391, 71-82. <https://doi.org/10.1007/s00210-017-1436-6>
16. Liu, C., Cai, Z., Hu, T., Yao, Q., Zhang, L. (2020) Cathepsin B aggravated doxorubicin-induced myocardial injury via NF-κB signalling. Mol. Med. Rep. 22, 4848-4856. <https://doi.org/10.3892/mmr.2020.11583>
17. Liu, C. J., Cheng, Y. C., Lee, K. W., Hsu, H. H., Chu, C. H., Tsai, F. J., Tsai, C. H., Chu, C. Y., Liu, J. Y., Kuo, W. W., Huang, C. Y. (2008a) Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol. Cell. Biochem. 313, 167-178. <https://doi.org/10.1007/s11010-008-9754-0>
18. Liu, N., Okamura, K., Tyler, D. M., Phillips, M. D., Chung, W. J., Lai, E. C. (2008b) The evolution and functional diversification of animal microRNA genes. Cell Res. 18, 985-996. <https://doi.org/10.1038/cr.2008.278>
19. Liu, P. Y., Tian, Y., Xu, S. Y. (2014) Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol. 11, 303-310.
20. Park, K. M., Teoh, J. P., Wang, Y., Broskova, Z., Bayoumi, A. S., Tang, Y., Su, H., Weintraub, N. L., Kim, I. M. (2016) Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am. J. Physiol. 311, H371-383. <https://doi.org/10.1152/ajpheart.00807.2015>
21. Pfalzgraff, A., Weindl, G. (2019) Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis. Trends Pharmacol. Sci. 40, 187-197. <https://doi.org/10.1016/j.tips.2019.01.001>
22. Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., Xia, Z. Y. (2019) Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J. Diabetes Res. 2019, 8151836. <https://doi.org/10.1155/2019/8151836>
23. Shirazi-Tehrani, E., Firouzabadi, N., Tamaddon, G., Bahramali, E., Vafadar, A. (2020) Carvedilol alters circulating MiR-1 and MiR-214 in heart failure. Pharmacogenomics Pers. Med. 13, 375-383. <https://doi.org/10.2147/PGPM.S263740>
24. Su, L. J., Zhang, J. H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., Peng, Z. Y. (2019) Reactive oxygen species- induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 5080843. <https://doi.org/10.1155/2019/5080843>
25. Tan, Y., Ouyang, H., Xiao, X., Zhong, J., Dong, M. (2019) Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones 24, 595-608. <https://doi.org/10.1007/s12192-019-00992-2>
26. Wang, H. Y., Liu, X. Y., Han, G., Wang, Z. Y., Li, X. X., Jiang, Z. M., Jiang, C. M. (2013) LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol. Cell. Biochem. 379, 153-159. <https://doi.org/10.1007/s11010-013-1637-3>
27. Wang, X., Ha, T., Hu, Y., Lu, C., Liu, L., Zhang, X., Kao, R., Kalbfleisch, J., Williams, D., Li, C. (2016) MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget 7, 86926-86936. <https://doi.org/10.18632/oncotarget.13494>
28. Wang, Y., Jia, L., Shen, J., Wang, Y., Fu, Z., Su, S. A., Cai, Z., Wang, J. A., Xiang, M. (2018a) Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog. 14, e1006872. <https://doi.org/10.1371/journal.ppat.1006872>
29. Wang, Y., Zhao, R., Liu, D., Deng, W., Xu, G., Liu, W., Rong, J., Long, X., Ge, J., Shi, B. (2018b) Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxid. Med. Cell. Longev. 2018, 4971261. <https://doi.org/10.1155/2018/4971261>
30. Wu, Q. Q., Xu, M., Yuan, Y., Li, F. F., Yang, Z., Liu, Y., Zhou, M. Q., Bian, Z. Y., Deng, W., Gao, L., Li, H., Tang, Q. Z. (2015) Cathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF-α/ASK1/JNK pathway. Am. J. Physiol. 308, H1143-H1154. <https://doi.org/10.1152/ajpheart.00601.2014>
31. Xin, T., Lu, C. (2020) SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging 12, 16224-16237. <https://doi.org/10.18632/aging.103644>
32. Xue, J., Liu, J., Xu, B., Yu, J., Zhang, A., Qin, L., Liu, C., Yang, Y. (2021) miR-21-5p inhibits inflammation injuries in LPS-treated H9c2 cells by regulating PDCD4. Am. J. Transl. Res. 13, 11450-11460.
33. Yang, K., Shi, J., Hu, Z., Hu, X. (2019) The deficiency of miR-214-3p exacerbates cardiac fibrosis via miR-214-3p/NLRC5 axis. Clin. Sci. 133, 1845-1856. <https://doi.org/10.1042/CS20190203>
34. Zhang, H., Zhang, W., Jiao, F., Li, X., Zhang, H., Wang, L., Gong, Z. (2018) The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Med. Sci. Monit. 24, 2620-2630. <https://doi.org/10.12659/MSM.906362>
35. Zhang, X., Zhang, X., Xiong, Y., Xu, C., Liu, X., Lin, J., Mu, G., Xu, S., Liu, W. (2016) Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide- induced apoptosis. Int. J. Mol. Med. 38, 758-766. <https://doi.org/10.3892/ijmm.2016.2664>
36. Zhao, Y., Ponnusamy, M., Zhang, L., Zhang, Y., Liu, C., Yu, W., Wang, K., Li, P. (2017) The role of miR-214 in cardiovascular diseases. Eur. J. Pharmacol. 816, 138-145. <https://doi.org/10.1016/j.ejphar.2017.08.009>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive