Fol. Biol. 2022, 68, 78-85
https://doi.org/10.14712/fb2022068020078
MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B
References
1. Bai, H., Yang, B., Yu, W., Xiao, Y., Yu, D., Zhang, Q. (2018) Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp. Cell Res. 362, 180-187.
<https://doi.org/10.1016/j.yexcr.2017.11.015>
2. Bao, J., Ye, C., Zheng, Z., Zhou, Z. (2018) Fmr1 protects cardiomyocytes against lipopolysaccharide-induced myocardial injury. Exp. Ther. Med. 16, 1825-1833.
<https://doi.org/10.3892/etm.2018.6386>
3. Chang, W., Feng, M., Li, Y., Sun, Y., Sun, L. (2019) MKP1 overexpression reduces TNF-α-induced cardiac injury via suppressing mitochondrial fragmentation and inhibiting the JNK-MIEF1 pathways. J. Cell. Physiol. 2019, 1-12.
<https://doi.org/10.1002/jcp.28273>
4. Chen, W., Gao, G., Yan, M., Yu, M., Shi, K., Yang, P. (2021) Long noncoding RNA MAPKAPK5-AS1 promoted lipopolysaccharide- induced inflammatory damage in the myocardium by sponging microRNA-124-3p/E2F3. Mol. Med. 27, 131.
<https://doi.org/10.1186/s10020-021-00385-1>
5. Ge, C., Liu, J., Dong, S. (2018) miRNA-214 protects sepsisinduced myocardial injury. Shock 50, 112-118.
<https://doi.org/10.1097/SHK.0000000000000978>
6. Gölz, L., Memmert, S., Rath-Deschner, B., Jäger, A., Appel, T., Baumgarten, G., Götz, W., Frede, S. (2014) LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediators Inflamm. 2014, 986264.
<https://doi.org/10.1155/2014/986264>
7. Gong, L., Xu, H., Zhang, X., Zhang, T., Shi, J., Chang, H. (2019) Oridonin relieves hypoxia-evoked apoptosis and autophagy via modulating microRNA-214 in H9c2 cells. Artif. Cells Nanomed. Biotechnol. 47, 2585-2592.
<https://doi.org/10.1080/21691401.2019.1628037>
8. Haileselassie, B., Mukherjee, R., Joshi, A. U., Napier, B. A., Massis, L. M., Ostberg, N. P., Queliconi, B. B., Monack, D., Bernstein, D., Mochly-Rosen, D. (2019) Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J. Mol. Cell. Cardiol. 130, 160-169.
<https://doi.org/10.1016/j.yjmcc.2019.04.006>
9. Hinkelbein, J., Böhm, L., Braunecker, S., Adler, C., De Robertis, E., Cirillo, F. (2017) Decreased tissue COX5B expression and mitochondrial dysfunction during sepsis-induced kidney injury in rats. Oxid. Med. Cell. Longev. 2017, 8498510.
<https://doi.org/10.26226/morressier.58f5b031d462b80296c9d42f>
10. Ho, J., Chan, H., Wong, S. H., Wang, M. H., Yu, J., Xiao, Z., Liu, X., Choi, G., Leung, C. C., Wong, W. T., Li, Z., Gin, T., Chan, M. T., Wu, W. K. (2016) The involvement of regulatory non-coding RNAs in sepsis: a systematic review. Crit. Care 20, 383.
<https://doi.org/10.1186/s13054-016-1555-3>
11. L'Heureux, M., Sternberg, M., Brath, L., Turlington, J., Kashiouris, M. G. (2020) Sepsis-induced cardiomyopathy: a comprehensive review. Curr. Cardiol. Rep. 22, 35.
<https://doi.org/10.1007/s11886-020-01277-2>
12. Landesberg, G., Gilon, D., Meroz, Y., Georgieva, M., Levin, P. D., Goodman, S., Avidan, A., Beeri, R., Weissman, C., Jaffe, A. S., Sprung, C. L. (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur. Heart J. 33, 895-903.
<https://doi.org/10.1093/eurheartj/ehr351>
13. Lelubre, C., Vincent, J. L. (2018) Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 14, 417-427.
<https://doi.org/10.1038/s41581-018-0005-7>
14. Li, M., Zhang, Z., Liu, B., Chen, L., Wang, M. (2022) LncRNA GAS5 upregulates miR-214 through methylation to participate in cell apoptosis of sepsis. Arch. Physiol. Biochem. 128, 1259-1264.
<https://doi.org/10.1080/13813455.2020.1764051>
15. Liow, K. Y., Chow, S. C. (2018) The cathepsin B inhibitor z- FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol. 391, 71-82.
<https://doi.org/10.1007/s00210-017-1436-6>
16. Liu, C., Cai, Z., Hu, T., Yao, Q., Zhang, L. (2020) Cathepsin B aggravated doxorubicin-induced myocardial injury via NF-κB signalling. Mol. Med. Rep. 22, 4848-4856.
<https://doi.org/10.3892/mmr.2020.11583>
17. Liu, C. J., Cheng, Y. C., Lee, K. W., Hsu, H. H., Chu, C. H., Tsai, F. J., Tsai, C. H., Chu, C. Y., Liu, J. Y., Kuo, W. W., Huang, C. Y. (2008a) Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol. Cell. Biochem. 313, 167-178.
<https://doi.org/10.1007/s11010-008-9754-0>
18. Liu, N., Okamura, K., Tyler, D. M., Phillips, M. D., Chung, W. J., Lai, E. C. (2008b) The evolution and functional diversification of animal microRNA genes. Cell Res. 18, 985-996.
<https://doi.org/10.1038/cr.2008.278>
19. 2014) Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol. 11, 303-310.
, P. Y., Tian, Y., Xu, S. Y. (
20. Park, K. M., Teoh, J. P., Wang, Y., Broskova, Z., Bayoumi, A. S., Tang, Y., Su, H., Weintraub, N. L., Kim, I. M. (2016) Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am. J. Physiol. 311, H371-383.
<https://doi.org/10.1152/ajpheart.00807.2015>
21. Pfalzgraff, A., Weindl, G. (2019) Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis. Trends Pharmacol. Sci. 40, 187-197.
<https://doi.org/10.1016/j.tips.2019.01.001>
22. Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., Xia, Z. Y. (2019) Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J. Diabetes Res. 2019, 8151836.
<https://doi.org/10.1155/2019/8151836>
23. Shirazi-Tehrani, E., Firouzabadi, N., Tamaddon, G., Bahramali, E., Vafadar, A. (2020) Carvedilol alters circulating MiR-1 and MiR-214 in heart failure. Pharmacogenomics Pers. Med. 13, 375-383.
<https://doi.org/10.2147/PGPM.S263740>
24. Su, L. J., Zhang, J. H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., Peng, Z. Y. (2019) Reactive oxygen species- induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 5080843.
<https://doi.org/10.1155/2019/5080843>
25. Tan, Y., Ouyang, H., Xiao, X., Zhong, J., Dong, M. (2019) Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones 24, 595-608.
<https://doi.org/10.1007/s12192-019-00992-2>
26. Wang, H. Y., Liu, X. Y., Han, G., Wang, Z. Y., Li, X. X., Jiang, Z. M., Jiang, C. M. (2013) LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol. Cell. Biochem. 379, 153-159.
<https://doi.org/10.1007/s11010-013-1637-3>
27. Wang, X., Ha, T., Hu, Y., Lu, C., Liu, L., Zhang, X., Kao, R., Kalbfleisch, J., Williams, D., Li, C. (2016) MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget 7, 86926-86936.
<https://doi.org/10.18632/oncotarget.13494>
28. Wang, Y., Jia, L., Shen, J., Wang, Y., Fu, Z., Su, S. A., Cai, Z., Wang, J. A., Xiang, M. (2018a) Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog. 14, e1006872.
<https://doi.org/10.1371/journal.ppat.1006872>
29. Wang, Y., Zhao, R., Liu, D., Deng, W., Xu, G., Liu, W., Rong, J., Long, X., Ge, J., Shi, B. (2018b) Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxid. Med. Cell. Longev. 2018, 4971261.
<https://doi.org/10.1155/2018/4971261>
30. Wu, Q. Q., Xu, M., Yuan, Y., Li, F. F., Yang, Z., Liu, Y., Zhou, M. Q., Bian, Z. Y., Deng, W., Gao, L., Li, H., Tang, Q. Z. (2015) Cathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF-α/ASK1/JNK pathway. Am. J. Physiol. 308, H1143-H1154.
<https://doi.org/10.1152/ajpheart.00601.2014>
31. Xin, T., Lu, C. (2020) SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging 12, 16224-16237.
<https://doi.org/10.18632/aging.103644>
32. 2021) miR-21-5p inhibits inflammation injuries in LPS-treated H9c2 cells by regulating PDCD4. Am. J. Transl. Res. 13, 11450-11460.
, J., Liu, J., Xu, B., Yu, J., Zhang, A., Qin, L., Liu, C., Yang, Y. (
33. Yang, K., Shi, J., Hu, Z., Hu, X. (2019) The deficiency of miR-214-3p exacerbates cardiac fibrosis via miR-214-3p/NLRC5 axis. Clin. Sci. 133, 1845-1856.
<https://doi.org/10.1042/CS20190203>
34. Zhang, H., Zhang, W., Jiao, F., Li, X., Zhang, H., Wang, L., Gong, Z. (2018) The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Med. Sci. Monit. 24, 2620-2630.
<https://doi.org/10.12659/MSM.906362>
35. Zhang, X., Zhang, X., Xiong, Y., Xu, C., Liu, X., Lin, J., Mu, G., Xu, S., Liu, W. (2016) Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide- induced apoptosis. Int. J. Mol. Med. 38, 758-766.
<https://doi.org/10.3892/ijmm.2016.2664>
36. Zhao, Y., Ponnusamy, M., Zhang, L., Zhang, Y., Liu, C., Yu, W., Wang, K., Li, P. (2017) The role of miR-214 in cardiovascular diseases. Eur. J. Pharmacol. 816, 138-145.
<https://doi.org/10.1016/j.ejphar.2017.08.009>