Fol. Biol. 2022, 68, 87-96
https://doi.org/10.14712/fb2022068030087
Polyphenols of Antibacterial Potential – May They Help in Resolving Some Present Hurdles in Medicine?
References
1. 2018) Bacterial quorum sensing and microbial community interactions. mBio 9, 2331-2317.
, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A., Chandler, J. R. (
2. 2019) Global economic impact of antibiotic resistance: a review. J. Glob. Antimicrob. Resist. 19, 313-316.
< , M., Khan, A. U. (https://doi.org/10.1016/j.jgar.2019.05.024>
3. 2021) Plant-derivatives small molecules with antibacterial activity. Antibiotics (Basel) 10, 231.
< , S., Crespo, D., Navas, J. (https://doi.org/10.3390/antibiotics10030231>
4. 2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629-655.
Resistance Collaborators (
5. 2017) Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria Essays. Biochem. 61, 49-59.
, M., Chai, W. C., Venter, H. (
6. 2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol. Res. 196, 44-68.
< , R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., Nabavi, S. M. (https://doi.org/10.1016/j.micres.2016.12.003>
7. 2018) Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42, 62-80.
< , J., Kristiansson, E., Larsson, D. G. J. (https://doi.org/10.1093/femsre/fux053>
8. 2020) Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microb. Pathogenesis 140, 103927.
< , D., Sinha, R., Mukherjee, P., Howlader, D. R., Nag, D., Sarkar, S., Koley, H., Withey, J. H., Gachhui, R. (https://doi.org/10.1016/j.micpath.2019.103927>
9. 2019) Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochim. Biophys. Acta Gen. Subj. 1863, 191-198.
< , E. H., Huang, J., Lin, Z., Brown, A. C. (https://doi.org/10.1016/j.bbagen.2018.10.011>
10. 2007) Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 43, 348-361.
, M., Filesi C., Di Benedetto, R., Gargiulo, R., Giovannini, C., Masella, R. (
11. 2017) Evolution of bacterial virulence. FEMS Microbiol. Rev. 41, 679-697.
< , M., Hardt, W.-D. (https://doi.org/10.1093/femsre/fux023>
12. 2021) Polyphenols and human health: the role of bioavailability. Nutrients 13, 273.
< , C., Colombo, F., Biella, S., Stockley, C., Restani, P. (https://doi.org/10.3390/nu13010273>
13. 2022) Methanol extract from the seeds of Persea americana displays antibacterial and wound healing activities in rat model. J. Ethnopharmacol. 282, 1-14.
< , S. E., Tamokou, J.-D.-D., Kuete, V. (https://doi.org/10.1016/j.jep.2021.114573>
14. 2019) Clinical pharmacology of antibiotics. Clin. J. Am. Soc. Nephrol. 14, 1080-1090.
< , R. F., Shvets, K. (https://doi.org/10.2215/CJN.08140718>
15. 2021) Combination of two kinds of medicated microparticles based on hyaluronic acid or chitosan for a wound healing spray patch. Pharmaceutics 13, 34959476.
< , A., Migone, C., Cerri, L., Piras, A. M., Mezzetta, A., Maisetta, G., Esin, S., Batoni, G., Di Stefano, R., Zambito, Y. (https://doi.org/10.3390/pharmaceutics13122195>
16. 2017) Antimicrobial resistance: a global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57, 2857-2876.
< , M., Ranucci, E., Romagnoli, P., Giaccone, V. (https://doi.org/10.1080/10408398.2015.1077192>
17. 1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzć. Br. J. Exp. Pathol. 10, 226-236.
, A. (
18. Fleming, A. (1945) Penicillin. Nobel Lecture, December 11, 1945.
19. 2021) Efficacy of medicinal plant extracts as dental and periodontal antibiofilm agents: a systematic review of randomized clinical trials. J. Ethnopharmacol. 281, 114541.
< Dos Santos Cardoso, V., Amaral Roppa, R. H., Antunes, C., Silva Moraes, A. N., Santi, L., Konrath, E. L. (https://doi.org/10.1016/j.jep.2021.114541>
20. 2019) Performance of bioinspired phenolic nanocoatings for endosseous implant applications. ACS Biomater. Sci. Eng. 5, 3340-3351.
< , S., Gomez-Florit, M., Wiedmer, D., Barrantes, A., Petersen, F. C., Tiainen, H. (https://doi.org/10.1021/acsbiomaterials.9b00566>
21. 2019) Antimicrobial resistance: a multifaceted problem with multipronged solutions. Microbiologyopen 8, e945.
< , T., Laborda, P., Sanz-García, F., Hernando-Amado, S., Blanco, P., Martínez, J. L. (https://doi.org/10.1002/mbo3.945>
22. 2018) Evaluation of antibacterial and modifying action of catechin antibiotics in resistant strains. Microb. Pathog. 115, 175-178.
< , F. M. S., da Cunha Xavier, J., Dos Santos, J. F. S., de Matos, Y. M. L. S., Tintino, S. R., de Freitas, T. S., Coutinho, H. D. M. (https://doi.org/10.1016/j.micpath.2017.12.058>
23. 2016) Antibiotics: from prehistory to the present day. J. Antimicrob. Chemother. 71, 572-575.
< , K. (https://doi.org/10.1093/jac/dkv484>
24. 2021a) Synergistic inhibition effects of tea polyphenols as adjuvant of oxytetracycline on Vibrio parahaemolyticus and enhancement of Vibriosis resistance of Exopalaemon carinicauda. Aquac. Res. 52, 3900-3910.
< , Q., Zhang, C., Cao, Q., Cai, J., Chen, H. (https://doi.org/10.1111/are.15234>
25. 2021b) Evaluation of resveratrol-doped adhesive with advanced dentin bond durability. J. Dent. 114, 103817.
< , R., Peng, W., Yang, H., Yao, C., Yu, J., Huang, C. (https://doi.org/10.1016/j.jdent.2021.103817>
26. 2020) Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: a systematic review. Sci. Total Environ. 743, 140804.
< , N., Stabholz, Y., Kreft, J.-U., de la Cruz, R., Romalde, J. L., Nesme, J., Sřrensen, S. J., Smets, B. F., Graham, D., Paul, M. (https://doi.org/10.1016/j.scitotenv.2020.140804>
27. 2016) Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176-187.
< , A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., Piddock, L. J. V. (https://doi.org/10.1016/S0140-6736(15)00473-0>
28. 2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219-232.
< , K. E., Chan, B. K., Koff, J. L., Turner, P. E. (https://doi.org/10.1016/j.chom.2019.01.014>
29. 2019) The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. Biofouling 35, 758-767.
< , J.-H., Kim, Y.-G., Raorane, C. J., Ryu, S. Y., Shim, J.-J., Lee, J. (https://doi.org/10.1080/08927014.2019.1657418>
30. 2019) Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 65, 34-44.
< , N. A., Cameron, A. D. S. (https://doi.org/10.1139/cjm-2018-0275>
31. 2022) Chitosan coated bacteria responsive metal-polyphenol coating as efficient platform for wound healing. Compos. B Eng. 234, 109665.
< , L., Liu, L., Li, L., Guo, F., Ma, L., Fu, P., Wang, Y. (https://doi.org/10.1016/j.compositesb.2022.109665>
32. 2021) Epigallocatechin gallate (EGCG) attenuates staphylococcal alpha-hemolysin (Hla)-induced NLRP3 inflammasome activation via ROS-MAPK pathways and EGCG-Hla interactions. Int. Immunopharmacol. 100, 108170.
< , C., Hao, K., Liu, Z., Liu, Z., Guo, N. (https://doi.org/10.1016/j.intimp.2021.108170>
33. 2020a) Prevention of bacterial colonization based on self-assembled metal-phenolic nanocoating from rare-earth ions and catechin. ACS Appl. Mater. Interfaces 12, 22237-22245.
< , L., Xiao, X., Li, K., Li, X., Yu, K., Liao, X., Shi, B. (https://doi.org/10.1021/acsami.0c06459>
34. 2020b) Tea polyphenols inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances resistance to Klebsiella pneumoniae infection in Caenorhabditis elegans model. Microb. Pathog. 147, 32442664.
, W., Lu, H., Chu, X., Lou, T., Zhang, N., Zhang, B., Chu, W. (
35. 2021) The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants (Basel) 10, 188.
< , M., Drożdż, I., Tarko, T., Duda-Chodak, A. (https://doi.org/10.3390/antiox10020188>
36. 2021) Impact of Green Tea (Camellia Sinensis) on periodontitis and caries. Systematic review and meta-analysis. Jpn. Dent. Sci. Rev. 57, 1-11.
< , M., Ndokaj, A., Jedlinski, M., Ardan, R., Bietolini, S., Ottolenghi, L. (https://doi.org/10.1016/j.jdsr.2020.11.003>
37. 2018) Antimicrobial resistance: a one health perspective. Microbiol. Spectr. 6, 1-26.
< S. A., Collignon P. J. (https://doi.org/10.1128/microbiolspec.ARBA-0009-2017>
38. 2021) Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 5, 726-749.
< , M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., Moreira, R., Li, Y., Luzhetskyy, A., Medema, M. H., Pernodet, J.-L., Stadler, M., Tormo, J. R., Genilloud, O., Truman, A. W., Weissman, K. J., Takano, E., Sabatini, S., Stegmann, E., Brötz-Oesterhelt, H., Wohlleben, W., Seemann, M., Empting, M., Hirsch, A. K. H., Loretz, B., Lehr, C.-M., Titz, A., Herrmann, J., Jaeger, T., Alt, S., Hesterkamp, T., Winterhalter, M., Schiefer A., Pfarr, K., Hoerauf, A., Graz, H., Graz, M., Lindvall, M., Ramurthy, S., Karlén, A., van Dongen, M., Petkovic, H., Keller, A., Peyrane, F., Donadio, S., Fraisse, L., Piddock, L. J. V., Gilbert, I. H., Moser, H. E., Müller, R. (https://doi.org/10.1038/s41570-021-00313-1>
39. 2016) Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules 21, 244.
< , M., Kępa, M., Wojtyczka, R. D., Idzik, D., Dziedzic, A., Wąsik, T. J. (https://doi.org/10.3390/molecules21020244>
40. 2016) History of antibiotics research. Curr. Top. Microbiol. Immunol. 398, 237-272.
, K. I. (
41. 2020) Polyphenols from Salix tetrasperma impair virulence and inhibit quorum sensing of pseudomonas aeruginosa. Molecules 25, 1341.
< , I., Abbas, H. A., Ashour, M. L., Yasri, A., El-Shazly, A. M., Wink, M., Sobeh, M. (https://doi.org/10.3390/molecules25061341>
42. 2021) Anti-biofilm activity of epigallocatechin gallate (EGCG) against Streptococcus mutans bacteria. Res. J. Pharm. Technol. 14, 5019-5023.
< , P., Puteri, M. M., Pramesty, E. (https://doi.org/10.52711/0974-360X.2021.00875>
43. 2015) Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206, 948-964.
< , A., Jedrzejczak-Rey, N., Bednarek, P. (https://doi.org/10.1111/nph.13325>
44. 2020) Why big pharma has abandoned antibiotics. Nature 586, S50-S52.
< , B. (https://doi.org/10.1038/d41586-020-02884-3>
45. 2019) Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microb. Pathog. 126, 205-211.
< , S., Sharma, D., Bisht, D., Khan, A. U. (https://doi.org/10.1016/j.micpath.2018.11.013>
46. 2013) The combination of catechin and epicatechin callate from Fructus Crataegi potentiates beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo. Int. J. Mol. Sci. 14, 1802-1821.
< , R., Xiao, K., Li, B., Jiang, W., Peng, W., Zheng, J., Zhou, H. (https://doi.org/10.3390/ijms14011802>
47. 2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7, 493-512.
< , N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H. O. (https://doi.org/10.4155/fmc.15.6>
48. 2022) Synergistic effect of polyphenol-rich complex of plant and green propolis extracts with antibiotics against respiratory infections causing bacteria. Antibiotics (Basel) 11, 160.
< , A., Petrina, Z., Valkovska, V., Boroduškis, M., Gibnere, L., Gurkovska, E., Nikolajeva, V. (https://doi.org/10.3390/antibiotics11020160>
49. 2021) Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: an in vitro study. BMC Oral Health 21, 447.
< , M., Steinberg, D., Sionov, R. V., Friedman, M., Shalish, M. (https://doi.org/10.1186/s12903-021-01798-4>
50. 2016) The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB. Mol. Microbiol. 101, 136-151.
< , D. O., Mika, F., Richter, A. M., Hengge, R. (https://doi.org/10.1111/mmi.13379>
51. 2021) Current trends on resveratrol bioactivities to treat periodontitis. Food Biosci. 42, 101205.
< , J., Quispe, C., Alfred, M. A., Anil Kumar, N. V., Lombardi, N., Cinquanta, L., Iriti, M., Varoni, E. M., Gupta, G., Chellappan, D. K., Dua, K., Cardoso, S. M., Peron, G., Dey, A., Cruz-Martins, N., Rodrigues, C. F. (https://doi.org/10.1016/j.fbio.2021.101205>
52. 2018) Binding of catechins to staphylococcal enterotoxin A. Molecules 23, 1125.
< , Y., Utsumi, M., Hirai, C., Nakano, S., Ito, S., Tsuji, A., Ishii, T., Hosoya, T., Kan, T., Ohashi, N., Masuda, S. (https://doi.org/10.3390/molecules23051125>
53. 2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 102, 1397-1400.
< , R. K., Dubey, A. K., Garg, A., Sharma, R. K., Fiorino, M., Ameen, S. M., Haddad, M. A., Al-Hiary, M. (https://doi.org/10.5740/jaoacint.19-0133>
54. 2015) Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evid. Based Complement. Alternat. Med. 2015, 759459.
, S., Thumanu, K., Hengpratom, T., Eumkeb, G. (
55. 2020) Anti quorum sensing and anti virulence activity of tannic acid and it’s potential to breach resistance in Salmonella enterica Typhi / Paratyphi A clinical isolates. Microb. Pathog. 138, 103813.
< , C., Jha, N. K., Ghosh, R., Shetty, P. H. (https://doi.org/10.1016/j.micpath.2019.103813>
56. 2018) Inhibitory activity of hydroxytyrosol against Streptolysin O-induced hemolysis. Biocontrol Sci. 23, 77-80.
< , K., Kobayashi, M., Suzuki, J., Sanda, A., Kodera, Y., Fukuyama, M. (https://doi.org/10.4265/bio.23.77>
57. 2021) Effect of a berry polyphenolic fraction on biofilm formation, adherence properties and gene expression of Streptococcus mutans and its biocompatibility with oral epithelial cells. Antibiotics (Basel) 10, 1-11.
, M., Lagha, A. B., Chaieb, K., Grenier, D. (
58. 2016) Epigallocatechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment. J. Biol. Chem. 291, 26540-26553.
< , M., Dueholm, M. S., Vad, B. S., Seviour, T., Zeng, G., Geifman-Shochat, S., Sřndergaard, M. T., Christiansen, G., Meyer, R. L., Kjelleberg, S., Nielsen, P. H., Otzen, D. E. (https://doi.org/10.1074/jbc.M116.739953>
59. 2018) Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthc. Mater. 7, e1701503.
< , S., Zheng, J. (https://doi.org/10.1002/adhm.201701503>
60. 2015) Biofilm development. Microbiol. Spectr. 3, MB-0001-2014.
< , T. (https://doi.org/10.1128/microbiolspec.MB-0001-2014>
61. 2015) The antibiotic resistance crisis. Part 1: Causes and threats. P T 40, 277-283.
, C. L. (
62. 2019) Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 53, 716-723.
< , M., Ingmer, H. (https://doi.org/10.1016/j.ijantimicag.2019.02.015>
63. Wall, B. A., Pfeiffer, D. U., Mateus, A., Marshall, L. (2016) Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production. Food and Agriculture Organization of the United Nations, Rome, Italy.
64. 2019) Crossroads of antibiotic resistance and biosynthesis. J. Mol. Biol. 431, 3370-3399.
< , T. A. (https://doi.org/10.1016/j.jmb.2019.06.033>
65. 2020) Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 6, 115-123.
< , Z., Zhong, Y., Duan, Y., Chen, Q., Li, F. (https://doi.org/10.1016/j.aninu.2020.01.001>
66. 2021) Biofilm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Express 11, 73.
< , S. M., Aboulwafa, M. M., Hashem, A. M., Saleh, S. E. (https://doi.org/10.1186/s13568-021-01232-6>