Fol. Biol. 2022, 68, 97-104
https://doi.org/10.14712/fb2022068030097
Dynamic Molecular Profiles of Bone Marrow-Derived Osteoblasts at the Single-Cell Level
References
1. 2010) Physiology of bone loss. Radiol. Clin. North Am. 48, 483-495.
< , B. L., Khosla, S. (https://doi.org/10.1016/j.rcl.2010.02.014>
2. 2020) Def6 regulates endogenous type-I interferon responses in osteoblasts and suppresses osteogenesis. Elife 9, e59659.
< , Z. H., Ng, C., Inoue, K., Chen, Z. Y., Xia, Y. H., Hu, X. Y., Greenblatt, M., Pernis, A, Zhao, B. H. (https://doi.org/10.7554/eLife.59659>
3. 2019) The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15, 651-665.
< , N., Moorer, M. C., Clemens, T. L., Riddle, R. C. (https://doi.org/10.1038/s41574-019-0246-y>
4. Franzen, O., Gan, L. M., Bjorkegren, J. L. M. (2019) PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford) 2019, baz046.
5. 2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 1-15.
< , S., Castelo, R., Guinney, J. (https://doi.org/10.1186/1471-2105-14-7>
6. 2019) Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight 4, e129144.
< , R., Zong, X., Nadesan, P., Huebner, J. L., Kraus, V. B., White, J. P., White, P. J., Baht, G. S. (https://doi.org/10.1172/jci.insight.129144>
7. 2017) Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron 96, 1013-1023.
< , T. P. V., Liao, F., Francis, C. M., Robinson, G. O., Serrano, J. R., Jiang, H., Roh, J., Finn, M. B., Sullivan, P. M., Esparza, T. J., Stewart F. R., Mahan, T. E., Ulrich, J. D., Cole, T., Holtzman, D. M. (https://doi.org/10.1016/j.neuron.2017.11.014>
8. 2019) Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials 203, 96-110.
< , H., Sohn, J., Shen, H., Langhans, M. T., Tuan, R. S. (https://doi.org/10.1016/j.biomaterials.2018.06.026>
9. 2020) Osteocalcin and measures of adiposity: a systematic review and meta-analysis of observational studies. Arch. Osteoporos. 15, 145.
< , X., Liu, Y., Mathers, J., Cameron, M., Levinger, I., Yeap, B. B., Lewis, J. R., Brock, K. E., Brennan-Speranza, T. C. (https://doi.org/10.1007/s11657-020-00812-6>
10. 2019) Bone and heart health in chronic kidney disease: role of dentin matrix protein 1. Curr. Opin. Nephrol. Hypertens. 28, 297-303.
< , A. (https://doi.org/10.1097/MNH.0000000000000512>
11. 2020) CRISPR/Cas9 mediated GFP-human dentin matrix protein 1 (DMP1) promoter knock-in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation. J. Gene Med. 22, e3288.
< , F., Oskuee, R. K., Shokrgozar, M. A., Naderi-Meshkin, H., Goshayeshi, L., Bonakdar, S. (https://doi.org/10.1002/jgm.3288>
12. 2014) Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J. Bone Miner. Metab. 32, 240-251.
< , K. A., Zhu, D., Farquharson, C., MacRae, V. E. (https://doi.org/10.1007/s00774-013-0493-2>
13. 2019) Comprehensive integration of single-cell data. Cell 177, 1888-1902.e1821.
< , T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M. 3rd, Hao, Y., Stoeckius, M., Smibert, P., Satija, R. (https://doi.org/10.1016/j.cell.2019.05.031>
14. 2017) Bone resorption is regulated by circadian clock in osteoblasts. J. Bone Miner. Res. 32, 872-881.
< , T., Xu, C., Ochi, H., Nakazato, R., Yamada, D., Nakamura, S., Kodama, A., Shimba, S., Mieda, M., Fukasawa, K., Ozaki, K., Iezaki, T., Fujikawa, K., Yoneda, Y., Numano, R., Hida, A., Tei, H., Takeda, S., Hinoi, E. (https://doi.org/10.1002/jbmr.3053>
15. 2017) Novel COL1A1 mutation c. 3290G > T associated with severe form of osteogenesis imperfecta in a fetus. Pediatr. Dev. Pathol. 20, 455-459.
< , L., Vainio, P., Sandell, M., Laine, J. (https://doi.org/10.1177/1093526616686903>
16. 2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386.
< , C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak, K. J., Mikkelsen, T. S., Rinn, J. L. (https://doi.org/10.1038/nbt.2859>
17. 2021) Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Res. 9, 6.
< , L., Yang, H., Huang, J., Pei, S., Wang, L., Feng, J. Q., Jing, D., Zhao, H., Kronenberg, H. M., Moore, D. C., Yang, W. (https://doi.org/10.1038/s41413-020-00129-7>
18. 2019) Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 28, 302-311.e305.
< , S. L., Krishnan, I., Tenen, D. E., Matkins, V., Camacho, V., Patel, S., Agarwal, P., Bhatia, R., Tenen, D. G., Klein, A. M., Welner, R. S. (https://doi.org/10.1016/j.celrep.2019.06.031>
19. 2019) The effects of hyperuricemia on the differentiation and proliferation of osteoblasts and vascular smooth muscle cells are implicated in the elevated risk of osteopenia and vascular calcification in gout: an in vivo and in vitro analysis. J. Cell. Biochem. 120, 19660-19672.
< , B., Liu, D., Zhu, J., Pang, X. (https://doi.org/10.1002/jcb.29272>
20. 2019) CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 47, D721-D728.
< , X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., Luo, T., Xu, L., Liao, G., Yan, M., Ping, Y., Li, F., Shi, A., Bai, J., Zhao, T., Li, X., Xiao, Y. (https://doi.org/10.1093/nar/gky900>
21. 2020) Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife 9, e54695.
< , L., Yao, L., Tower, R. J., Wei, Y., Miao, Z., Park, J., Shrestha, R., Wang, L., Yu, W., Holdreith, N., Huang, X., Zhang, Y., Tong, W., Gong, Y., Ahn, J., Susztak, K., Dyment, N., Li, M., Long, F., Chen, C., Seale, P., Qin, L. (https://doi.org/10.7554/eLife.54695>