Fol. Biol. 2022, 68, 142-152
https://doi.org/10.14712/fb2022068040142
Ultra-Small Gold Nanoparticles with Mild Immunomodulatory Activity as a Potential Tool for Bio-Applications
References
1. 2015) Penetrating the blood-brain barrier: promise of novel nanoplatforms and delivery vehicles. ACS Nano 9, 9470-9474.
< , I. U., Chen, X. (https://doi.org/10.1021/acsnano.5b05341>
2. 2020) Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J. Immunol. Methods 478, 112721.
< , E. W., Graham, A. E., Re, N. A., Carr, I. M., Robinson, J. I., Mackie, S. L., Morgan, A. W. (https://doi.org/10.1016/j.jim.2019.112721>
3. 2020) Immunomodulatory potential of differently-terminated ultra-small silicon carbide nanoparticles. Nanomaterials (Basel) 10, 573.
< , T., Machova, I., Beke, D., Fucikova, A., Gali, A., Humlova, Z., Valenta, J., Hubalek Kalbacova, M. (https://doi.org/10.3390/nano10030573>
4. 2010) Quantum dots and their multimodal applications: a review. Materials (Basel) 3, 2260-2345.
< , D., Qian, L., Tseng, T.-K., Holloway, P. H. (https://doi.org/10.3390/ma3042260>
5. 2019) Tumor penetration of Sub-10 nm nanoparticles: effect of dendrimer properties on their penetration in multicellular tumor spheroids. Nanomedicine 21, 102059.
< , J., Poellmann, M. J., Sokolowski, K., Hsu, H. J., Kim, D. H., Hong, S. (https://doi.org/10.1016/j.nano.2019.102059>
6. 2014) Recruiting specialized macrophages across the borders to restore brain functions. Front. Cell. Neurosci. 8, 262.
< , I. (https://doi.org/10.3389/fncel.2014.00262>
7. 2012) Nanoparticle zeta-potentials. Acc. Chem. Res. 45, 317-326.
< , T. L., Chuang, C. H., Hill, R. J., Burda, C. (https://doi.org/10.1021/ar200113c>
8. 2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25, 2721-2730.
< , N., Schweiss, R., Lutzow, K., Werner, C., Groth, T. (https://doi.org/10.1016/j.biomaterials.2003.09.069>
9. 2017) Tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J. Vac. Sci. Technol. A 35.
, J. E. (
10. 2019) Molecular photoacoustic imaging with ultra-small gold nanoparticles. Biomed. Opt. Express 10, 3472-3483.
< , S., Bouchard, R., Sokolov, K. V. (https://doi.org/10.1364/BOE.10.003472>
11. 2016) Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol. 11, 808-816.
< , T., Yoshioka, Y., Izumi, N., Ichihashi, K., Handa, T., Nishijima, N., Uemura, E., Sagami, K., Takahashi, H., Yamaguchi, M., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S., Ishii, K. J., Higashisaka, K., Tsutsumi, Y. (https://doi.org/10.1038/nnano.2016.88>
12. 2014) Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed. Mater. 9, 045009.
< , A. P., Dugan, J. M., Gill, A. A., Fox, O. J., May, P. W., Haycock, J. W., Claeyssens, F. (https://doi.org/10.1088/1748-6041/9/4/045009>
13. 2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051.
< , K., Osawa, M., Okabe, S. (https://doi.org/10.1021/es900754q>
14. 2014) Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 101, 1-9.
< , Z., Řezníčková, A., Nagyová, M., Slepičková Kasálková, N., Sajdl, P., Slepička, P., Švorčík, V. (https://doi.org/10.1016/j.polymdegradstab.2014.01.024>
15. 2021) Simultaneous stabilization and functionalization of gold nanoparticles via biomolecule conjugation: progress and perspectives. ACS Appl. Mater. Interfaces 13, 42311-42328.
< , J. W., Choi, S. R., Heo, J. H. (https://doi.org/10.1021/acsami.1c10436>
16. 2015a) Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Part. Part. Syst. Charact. 32, 197-204.
< , H., Doane, T. L., Cheng, Y., Lu, F., Srinivasan, S., Zhu, J.-J., Burda, C. (https://doi.org/10.1002/ppsc.201400067>
17. 2015b) In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Adv. 5, 70109-70116.
< , G., Luo, Q., Wang, H., Zhuang, W., Wang, Y. (https://doi.org/10.1039/C5RA11600G>
18. 2014) A method for separating PEGylated Au nanoparticle ensembles as a function of grafting density and core size. Chem. Commun. (Camb). 50, 642-644.
< , F., Doane, T. L., Zhu, J. J., Burda, C. (https://doi.org/10.1039/C3CC47124A>
19. 2019) Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small 15, e1900968.
< , D., Wang, X., Zeng, S., Ramamurthy, G., Burda, C., Basilion, J. P. (https://doi.org/10.1002/smll.201900968>
20. 2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 13, 105-119.
< , P., Dosio, F., Cattel, L. (https://doi.org/10.2174/138920012798356934>
21. 2016) Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages. J. Nanopart. Res. 18, 58.
< , A., Colombo, M., Prosperi, D., Corsi, F., Panariti, A., Rivolta, I., Masserini, M., Cazzaniga, E. (https://doi.org/10.1007/s11051-016-3359-4>
22. 2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9, 6996-7008.
< , B., del Pino, P., Maffre, P., Hartmann, R., Gallego, M., Rivera-Fernandez, S., de la Fuente, J. M., Nienhaus, G. U., Parak, W. J. (https://doi.org/10.1021/acsnano.5b01326>
23. 2022) Comparative investigation of cellular effects of polyethylene glycol (PEG) derivatives. Polymers (Basel) 14, 279.
< Le Khanh, H., Nemes, D., Rusznyak, A., Ujhelyi, Z., Feher, P., Fenyvesi, F., Varadi, J., Vecsernyes, M., Bacskay, I. (https://doi.org/10.3390/polym14020279>
24. 2014) Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10, 2516-2529.
Garcia, K., Zarschler, K., Barbaro, L., Barreto, J. A., O’Malley, W., Spiccia, L., Stephan, H., Graham, B. (
25. 2017) Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 523, 91-97.
< , A., Slepicka, P., Slavikova, N., Staszek, M., Svorcik, V. (https://doi.org/10.1016/j.colsurfa.2017.04.005>
26. 2019) PEGylated gold nanoparticles: stability, cytotoxicity and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 560, 26-34.
< , A., Slavikova, N., Kolska, Z., Kolarova, K., Belinova, T., Hubalek Kalbacova, M., Cieslar, M., Svorcik, V. (https://doi.org/10.1016/j.colsurfa.2018.09.083>
27. 2016) Induction of macrophage function in human THP-1 cells is associated with rewiring of MAPK signaling and activation of MAP3K7 (TAK1) protein kinase. Front. Cell Dev. Biol. 4, 21.
< , E., Ventz, K., Harms, M., Mostertz, J., Hochgrafe, F. (https://doi.org/10.3389/fcell.2016.00021>
28. 2022) Sputtering onto liquids: a critical review. Beilstein J. Nanotechnol. 13, 10-53.
< , A., Chauvin, A., Konstantinidis, S. (https://doi.org/10.3762/bjnano.13.2>
29. 2020) Nanoparticle processing: understanding and controlling aggregation. Adv. Colloid Interface Sci. 279, 102162.
< , S., Wang, B., Dutta, P. (https://doi.org/10.1016/j.cis.2020.102162>
30. 2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644-10654.
< , R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., Sastry, M. (https://doi.org/10.1021/la0513712>
31. 2020) Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci. Rep. 10, 18033.
< , V., Mekky, G., van der Meer, S. B., Seeds, M. C., Atala, A. J., Epple, M. (https://doi.org/10.1038/s41598-020-75125-2>
32. 2012) Dynamic light scattering based microelectrophoresis: main prospects and limitations. J. Dispers. Sci. Technol. 33, 1762-1786.
< , V. (https://doi.org/10.1080/01932691.2011.625523>
33. 2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17-21.
< , E., Malissen, B. (https://doi.org/10.1038/ni1153>
34. 2011) Sputtering onto liquids: from thin films to nanoparticles. J. Phys. Chem. C Nanomater. Interfaces 115, 16362-16367.
< , H., Gonçalves, R. V., Feil, A. F., Migowski, P., Poletto, F. S., Pohlmann, A. R., Dupont, J., Teixeira, S. R. R. (https://doi.org/10.1021/jp205390d>
35. 2016) Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88, 11804-11812.
< , Q., Jacobs, T. M., McCallen, J. D., Moore, D. T., Huckaby, J. T., Edelstein, J. N., Lai, S. K. (https://doi.org/10.1021/acs.analchem.6b03437>
36. 2016) Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 10, 49-63.
< , M., Lei, B., Gao, C., Yan, J., Ma, P. X. (https://doi.org/10.1007/s12274-016-1265-9>