Fol. Biol. 2022, 68, 142-152

https://doi.org/10.14712/fb2022068040142

Ultra-Small Gold Nanoparticles with Mild Immunomodulatory Activity as a Potential Tool for Bio-Applications

T. Bělinová1, P. Javorová2, H. Y. Nguyenová3, A. Řezníčková3, Z. Humlová2,4, Marie Hubálek Kalbáčová2

1Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
2Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
3Department of Solid State Engineering, University of Chemistry and Technology Prague, Czech Republic
4Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic

Received July 2022
Accepted December 2022

References

1. Ali, I. U., Chen, X. (2015) Penetrating the blood-brain barrier: promise of novel nanoplatforms and delivery vehicles. ACS Nano 9, 9470-9474. <https://doi.org/10.1021/acsnano.5b05341>
2. Baxter, E. W., Graham, A. E., Re, N. A., Carr, I. M., Robinson, J. I., Mackie, S. L., Morgan, A. W. (2020) Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J. Immunol. Methods 478, 112721. <https://doi.org/10.1016/j.jim.2019.112721>
3. Belinova, T., Machova, I., Beke, D., Fucikova, A., Gali, A., Humlova, Z., Valenta, J., Hubalek Kalbacova, M. (2020) Immunomodulatory potential of differently-terminated ultra-small silicon carbide nanoparticles. Nanomaterials (Basel) 10, 573. <https://doi.org/10.3390/nano10030573>
4. Bera, D., Qian, L., Tseng, T.-K., Holloway, P. H. (2010) Quantum dots and their multimodal applications: a review. Materials (Basel) 3, 2260-2345. <https://doi.org/10.3390/ma3042260>
5. Bugno, J., Poellmann, M. J., Sokolowski, K., Hsu, H. J., Kim, D. H., Hong, S. (2019) Tumor penetration of Sub-10 nm nanoparticles: effect of dendrimer properties on their penetration in multicellular tumor spheroids. Nanomedicine 21, 102059. <https://doi.org/10.1016/j.nano.2019.102059>
6. Corraliza, I. (2014) Recruiting specialized macrophages across the borders to restore brain functions. Front. Cell. Neurosci. 8, 262. <https://doi.org/10.3389/fncel.2014.00262>
7. Doane, T. L., Chuang, C. H., Hill, R. J., Burda, C. (2012) Nanoparticle zeta-potentials. Acc. Chem. Res. 45, 317-326. <https://doi.org/10.1021/ar200113c>
8. Faucheux, N., Schweiss, R., Lutzow, K., Werner, C., Groth, T. (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25, 2721-2730. <https://doi.org/10.1016/j.biomaterials.2003.09.069>
9. Greene, J. E. (2017) Tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J. Vac. Sci. Technol. A 35.
10. Han, S., Bouchard, R., Sokolov, K. V. (2019) Molecular photoacoustic imaging with ultra-small gold nanoparticles. Biomed. Opt. Express 10, 3472-3483. <https://doi.org/10.1364/BOE.10.003472>
11. Hirai, T., Yoshioka, Y., Izumi, N., Ichihashi, K., Handa, T., Nishijima, N., Uemura, E., Sagami, K., Takahashi, H., Yamaguchi, M., Nagano, K., Mukai, Y., Kamada, H., Tsunoda, S., Ishii, K. J., Higashisaka, K., Tsutsumi, Y. (2016) Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol. 11, 808-816. <https://doi.org/10.1038/nnano.2016.88>
12. Hopper, A. P., Dugan, J. M., Gill, A. A., Fox, O. J., May, P. W., Haycock, J. W., Claeyssens, F. (2014) Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed. Mater. 9, 045009. <https://doi.org/10.1088/1748-6041/9/4/045009>
13. Kawata, K., Osawa, M., Okabe, S. (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051. <https://doi.org/10.1021/es900754q>
14. Kolská, Z., Řezníčková, A., Nagyová, M., Slepičková Ka­sálková, N., Sajdl, P., Slepička, P., Švorčík, V. (2014) Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 101, 1-9. <https://doi.org/10.1016/j.polymdegradstab.2014.01.024>
15. Lee, J. W., Choi, S. R., Heo, J. H. (2021) Simultaneous stabilization and functionalization of gold nanoparticles via biomolecule conjugation: progress and perspectives. ACS Appl. Mater. Interfaces 13, 42311-42328. <https://doi.org/10.1021/acsami.1c10436>
16. Liu, H., Doane, T. L., Cheng, Y., Lu, F., Srinivasan, S., Zhu, J.-J., Burda, C. (2015a) Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Part. Part. Syst. Charact. 32, 197-204. <https://doi.org/10.1002/ppsc.201400067>
17. Liu, G., Luo, Q., Wang, H., Zhuang, W., Wang, Y. (2015b) In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Adv. 5, 70109-70116. <https://doi.org/10.1039/C5RA11600G>
18. Lu, F., Doane, T. L., Zhu, J. J., Burda, C. (2014) A method for separating PEGylated Au nanoparticle ensembles as a function of grafting density and core size. Chem. Commun. (Camb). 50, 642-644. <https://doi.org/10.1039/C3CC47124A>
19. Luo, D., Wang, X., Zeng, S., Ramamurthy, G., Burda, C., Basilion, J. P. (2019) Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small 15, e1900968. <https://doi.org/10.1002/smll.201900968>
20. Milla, P., Dosio, F., Cattel, L. (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 13, 105-119. <https://doi.org/10.2174/138920012798356934>
21. Orlando, A., Colombo, M., Prosperi, D., Corsi, F., Panariti, A., Rivolta, I., Masserini, M., Cazzaniga, E. (2016) Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages. J. Nanopart. Res. 18, 58. <https://doi.org/10.1007/s11051-016-3359-4>
22. Pelaz, B., del Pino, P., Maffre, P., Hartmann, R., Gallego, M., Rivera-Fernandez, S., de la Fuente, J. M., Nienhaus, G. U., Parak, W. J. (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9, 6996-7008. <https://doi.org/10.1021/acsnano.5b01326>
23. Pham Le Khanh, H., Nemes, D., Rusznyak, A., Ujhelyi, Z., Feher, P., Fenyvesi, F., Varadi, J., Vecsernyes, M., Bacskay, I. (2022) Comparative investigation of cellular effects of polyethylene glycol (PEG) derivatives. Polymers (Basel) 14, 279. <https://doi.org/10.3390/polym14020279>
24. Pombo Garcia, K., Zarschler, K., Barbaro, L., Barreto, J. A., O’Malley, W., Spiccia, L., Stephan, H., Graham, B. (2014) Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10, 2516-2529.
25. Reznickova, A., Slepicka, P., Slavikova, N., Staszek, M., Svorcik, V. (2017) Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 523, 91-97. <https://doi.org/10.1016/j.colsurfa.2017.04.005>
26. Reznickova, A., Slavikova, N., Kolska, Z., Kolarova, K., Belinova, T., Hubalek Kalbacova, M., Cieslar, M., Svorcik, V. (2019) PEGylated gold nanoparticles: stability, cytotoxicity and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 560, 26-34. <https://doi.org/10.1016/j.colsurfa.2018.09.083>
27. Richter, E., Ventz, K., Harms, M., Mostertz, J., Hochgrafe, F. (2016) Induction of macrophage function in human THP-1 cells is associated with rewiring of MAPK signaling and activation of MAP3K7 (TAK1) protein kinase. Front. Cell Dev. Biol. 4, 21. <https://doi.org/10.3389/fcell.2016.00021>
28. Sergievskaya, A., Chauvin, A., Konstantinidis, S. (2022) Sputtering onto liquids: a critical review. Beilstein J. Nanotechnol. 13, 10-53. <https://doi.org/10.3762/bjnano.13.2>
29. Shrestha, S., Wang, B., Dutta, P. (2020) Nanoparticle processing: understanding and controlling aggregation. Adv. Colloid Interface Sci. 279, 102162. <https://doi.org/10.1016/j.cis.2020.102162>
30. Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., Sastry, M. (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644-10654. <https://doi.org/10.1021/la0513712>
31. Sokolova, V., Mekky, G., van der Meer, S. B., Seeds, M. C., Atala, A. J., Epple, M. (2020) Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci. Rep. 10, 18033. <https://doi.org/10.1038/s41598-020-75125-2>
32. Uskokovic, V. (2012) Dynamic light scattering based microelectrophoresis: main prospects and limitations. J. Dispers. Sci. Technol. 33, 1762-1786. <https://doi.org/10.1080/01932691.2011.625523>
33. Vivier, E., Malissen, B. (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17-21. <https://doi.org/10.1038/ni1153>
34. Wender, H., Gonçalves, R. V., Feil, A. F., Migowski, P., Poletto, F. S., Pohlmann, A. R., Dupont, J., Teixeira, S. R. R. (2011) Sputtering onto liquids: from thin films to nanoparticles. J. Phys. Chem. C Nanomater. Interfaces 115, 16362-16367. <https://doi.org/10.1021/jp205390d>
35. Yang, Q., Jacobs, T. M., McCallen, J. D., Moore, D. T., Huckaby, J. T., Edelstein, J. N., Lai, S. K. (2016) Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88, 11804-11812. <https://doi.org/10.1021/acs.analchem.6b03437>
36. Yu, M., Lei, B., Gao, C., Yan, J., Ma, P. X. (2016) Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 10, 49-63. <https://doi.org/10.1007/s12274-016-1265-9>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive