Fol. Biol. 2022, 68, 180-188
https://doi.org/10.14712/fb2022068050180
Up-regulation of MiR-146b-5p Inhibits Fibrotic Lung Pericytes via Inactivation of the Notch1/PDGFRβ/ROCK1 Pathway
References
1. 2022) CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell. Rep. 38, 110189.
< , A. J., Carvalheiro, T., Ottria, A., de Haan, J. J., Brans, M. A. D., Brandt, M. M., Tieland, R. G., Lopes, A. P., Fernandez, B. M., Bekker, C. P. J., Van der Linden, M., Zimmermann, M., Giovannone, B., Wichers, C. G. K., Garcia, S., de Kok, M., Stifano, G., Xu, Y. J., Kowalska, M. A., Waasdorp, M., Cheng, C., Gibbs, S., de Jager, S. C. A., Van Roon, J. A. G., Radstake, T., Marut, W. (https://doi.org/10.1016/j.celrep.2021.110189>
2. 2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther. 5, 122.
< , A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., Delbono, O. (https://doi.org/10.1186/scrt512>
3. 2019) Developmental pathways in the pathogenesis of lung fibrosis. Mol. Aspects Med. 65, 56-69.
< , D., Otoupalova, E., Smith, S. R., Volckaert, T., De Langhe, S. P., Thannickal, V. J. (https://doi.org/10.1016/j.mam.2018.08.004>
4. 2019) Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. J. Mol. Med. (Berl.) 97, 1427-1438.
< , P., Legchenko, E., Geldner, J., Riehle, C., Hansmann, G. (https://doi.org/10.1007/s00109-019-01817-6>
5. 2020) Notch1 in cancer therapy: possible clinical implications and challenges. Mol. Pharmacol. 98, 559-576.
< , L., Elmadany, N., Alwosaibai, K., Alshaer, W. (https://doi.org/10.1124/molpharm.120.000006>
6. 2019) Pericytes in the lung. Adv. Exp. Med. Biol. 1122, 41-58.
< , C. F., Wilson, C. L., Schnapp, L. M. (https://doi.org/10.1007/978-3-030-11093-2_3>
7. 2022) Arsenic trioxide inhibits the functions of lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Toxicol. Appl. Pharmacol. 441, 115972.
< , A., Morzadec, C., Duclos, M., Gutierrez, F. L., Chiforeanu, D. C., Naoures, C. L., Latour, B. D., Rouzé, S., Wollin, L., Jouneau, S., Vernhet, L. (https://doi.org/10.1016/j.taap.2022.115972>
8. 2021) Lung gene expression and single cell analyses reveal two subsets of idiopathic pulmonary fibrosis (IPF) patients associated with different pathogenic mechanisms. PLoS One 16, e0248889.
< , J., Wang, J., Bodea, C., Cao, S., Levesque, M. C. (https://doi.org/10.1371/journal.pone.0248889>
9. 2018) The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 58, 471-481.
< , R. S., Probst, C. K., Lagares, D., Franklin, A., Spinney, J. J., Brazee, P. L., Grasberger, P., Zhang, L., Black, K. E., Sakai, N., Shea, B. S., Liao, J. K., Medoff, B. D., Tager, A. M. (https://doi.org/10.1165/rcmb.2017-0075OC>
10. 2020) Contribution of autophagy-Notch1-mediated NLRP3 inflammasome activation to chronic inflammation and fibrosis in keloid fibroblasts. Int. J. Mol. Sci. 21, 8050.
< , S., Kim, S. K., Park, H., Lee, Y. J., Park, S. H., Lee, K. J., Lee, D. G., Kang, H., Kim, J. E. (https://doi.org/10.3390/ijms21218050>
11. 2022) Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin. Transl. Med. 12, e1036.
, Q., Cheng, Y., Zhang, Z., Bi, Z., Ma, X., Wei, Y., Wei, X. (
12. 2021) FSTL1-USP10-Notch1 signaling axis protects against cardiac dysfunction through inhibition of myocardial fibrosis in diabetic mice. Front. Cell. Dev. Biol. 9, 757068.
< , L., Ma, J., Liu, Y., Shao, Y., Xiong, X., Duan, W., Gao, E., Yang, Q., Chen, S., Yang, J., Ren, J., Zheng, Q., Liu, J. (https://doi.org/10.3389/fcell.2021.757068>
13. 2019) Antifibrotic therapy for idiopathic pulmonary fibrosis: time to treat. Respir. Res. 20, 205.
< , T. M., Strek, M. E. (https://doi.org/10.1186/s12931-019-1161-4>
14. 2018) Systems analysis of transcriptomic and proteomic profiles identifies novel regulation of fibrotic programs by miRNAs in pulmonary fibrosis fibroblasts. Genes (Basel) 9, 588.
< , S., Liu, F., Szak, S., Hronowski, X., Gao, B., Juhasz, P., Sun, C., Liu, M., McLaughlin, H., Xiao, Q., Feghali-Bostwick, C., Zheng, T. S. (https://doi.org/10.3390/genes9120588>
15. 2015) Endogenous brain pericytes are widely activated and contribute to mouse glioma microvasculature. PLoS One 10, e0123553.
< , A., Ozen, I., Genove, G., Paul, G., Bengzon, J. (https://doi.org/10.1371/journal.pone.0123553>
16. 2019) Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp. Mol. Med. 51, 1-11.
< , Y. C., Chen, Q., Luo, J. M., Nie, J., Meng, Q. H., Shuai, W., Xie, H., Xia, J. M., Wang, H. (https://doi.org/10.1038/s12276-019-0228-0>
17. 2016) miR221 targets HMGA2 to inhibit bleomycin-induced pulmonary fibrosis by regulating TGFbeta1/Smad3-induced EMT. Int. J. Mol. Med. 38, 1208-1216.
< , Y. C., Liu, J. S., Tang, H. K., Nie, J., Zhu, J. X., Wen, L. L., Guo, Q. L. (https://doi.org/10.3892/ijmm.2016.2705>
18. 2021) Exosomal miR-107 antagonizes profibrotic phenotypes of pericytes by targeting a pathway involving HIF-1α/Notch1/PDGFRbeta/YAP1/Twist1 axis in vitro. Am. J. Physiol. Heart Circ. Physiol. 320, H520-H534.
< , Y. C., Xie, H., Zhang, Y. C., Meng, Q. H., Xiong, M. M., Jia, M. W., Peng, F., Tang, D. L. (https://doi.org/10.1152/ajpheart.00373.2020>
19. 2021) Notch1 signaling enhances collagen expression and fibrosis in mouse uterus. Biofactors 47, 852-864.
< , Q. X., Zhang, W. Q., Liu, X. Z., Yan, W. K., Lu, L., Song, S. S., Wei, S. W., Liu, Y. N., Kang, J. W., Su, R. W. (https://doi.org/10.1002/biof.1771>
20. 2021) ROCK inhibitor attenuates carbon blacks-induced pulmonary fibrosis in mice via Rho/ROCK/NF-kappa B pathway. Environ. Toxicol. 36, 1476-1484.
< , J., Tang, Y., Zhong, X., Huang, H., Wei, H., Jin, Y., He, Y., Cao, J., Jin, L., Hu, B. (https://doi.org/10.1002/tox.23135>
21. 2018) PEP06 polypeptide 30 exerts antitumour effect in colorectal carcinoma via inhibiting epithelial-mesenchymal transition. Br. J. Pharmacol. 175, 3111-3130.
< , S., Li, L., Tian, W., Nie, D., Mu, W., Qiu, F., Liu, Y., Liu, X., Wang, X., Du, Z., Chu, W. F., Yang, B. (https://doi.org/10.1111/bph.14352>