Fol. Biol. 2023, 69, 13-21
https://doi.org/10.14712/fb2023069010013
NRF1 Alleviated Oxidative Stress of Glioblastoma Cells by Regulating NOR1
References
1. , S., Chatterjee, A., Yadav, S., Chekuri, G., Karulkar, A., Jaiswal, A. K., Goda, J. S., Purwar, R. (2022) Combinatorial approaches to effective therapy in glioblastoma (GBM): current status and what the future holds. Int. Rev. Immunol. 41, 582-605.
<https://doi.org/10.1080/08830185.2022.2101647>
2. , M., Daniel, M., Chepelev, N. L., Willmore, W. G. (2015) Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. Biochim. Biophys. Acta 1849, 1260-1276.
<https://doi.org/10.1016/j.bbagrm.2015.08.001>
3. Nanjaiah, N., Ramaswamy, P., Goswami, K., Fathima, K. H., Borkotokey, M. (2019) Survival of glioblastoma cells in response to endogenous and exogenous oxidative challenges: possible implication of NMDA receptor-mediated regulation of redox homeostasis. Cell Biol. Int. 43, 1443-1452.
<https://doi.org/10.1002/cbin.11193>
4. , S., Cybulska, A. M., Simińska, D., Korbecki, J., Kojder, K., Chlubek, D., Baranowska-Bosiacka, I. (2022) Epidemiology of glioblastoma multiforme - literature review. Cancers (Basel) 14, 2412.
<https://doi.org/10.3390/cancers14102412>
5. , J. D., Dinkova-Kostova, A. T., Tew, K. D. (2020) Oxidative stress in cancer. Cancer Cell 38, 167-197.
<https://doi.org/10.1016/j.ccell.2020.06.001>
6. , J. A., Elison, W. S., Tessem, J. S. (2019) Function of Nr4a orphan nuclear receptors in proliferation, apoptosis and fuel utilization across tissues. Cells 8, 1373.
<https://doi.org/10.3390/cells8111373>
7. , S., Feng, J., Wang, M., Wufuer, R., Liu, K., Zhang, Z., Zhang, Y. (2022) Nrf1 is an indispensable redox-determining factor for mitochondrial homeostasis by integrating multi-hierarchical regulatory networks. Redox Biol. 57, 102470.
<https://doi.org/10.1016/j.redox.2022.102470>
8. , M. D., Mandic, A. D., Maricic, S. M., Srdjenovic, B. U. (2021) Oxidative stress and its role in cancer. J. Cancer Res. Ther. 17, 22-28.
<https://doi.org/10.4103/jcrt.JCRT_862_16>
9. , C. L., Ponneri Babuharisankar, A., Lin, Y. C., Lien, H. W., Lo, Y. K., Chou, H. Y., Tangeda, V., Cheng, L. C., Cheng, A. N., Lee, A. Y. (2022) Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J. Biomed. Sci. 29, 74.
<https://doi.org/10.1186/s12929-022-00859-2>
10. , W., Li, X., Wang, W., Li, X., Tan, Y., Yi, M., Yang, J., McCarthy, J. B., Xiong, W., Wu, M., Ma, J., Su, B., Zhang, Z., Liao, Q., Xiang, B., Li, G. (2011) NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis 32, 1305-1314.
<https://doi.org/10.1093/carcin/bgr174>
11. , C., Mankad, K., Thust, S., Dixon, L., Limback-Stanic, C., D’Arco, F., Jacques, T. S., Löbel, U. (2022) 2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist. Neuroradiology 64, 1919-1950.
<https://doi.org/10.1007/s00234-022-03008-6>
12. , A., Byers, H. A., Radhakrishnan, S. K. (2020) Regulation of NRF1, a master transcription factor of proteasome genes: implications for cancer and neurodegeneration. Mol. Biol. Cell 31, 2158-2163.
<https://doi.org/10.1091/mbc.E20-04-0238>
13. , C., Oliver, L., Lalier, L., Vallette, F. M. (2020) Drug resistance in glioblastoma: the two faces of oxidative stress. Front. Mol. Biosci. 7, 620677.
<https://doi.org/10.3389/fmolb.2020.620677>
14. , R. P., Pucko, E. B. (2022) Harnessing oxidative stress for anti-glioma therapy. Neurochem. Int. 154, 105281.
<https://doi.org/10.1016/j.neuint.2022.105281>
15. , D., Schatton, D., Wiederstein, J. L., Marx, M., Rugarli, E. I. (2020) CLUH granules coordinate translation of mitochondrial proteins with mTORC1 signaling and mitophagy. EMBO J. 39, e102731.
<https://doi.org/10.15252/embj.2019102731>
16. , L., Li, N., Zhang, Z. (2022) Emerging therapies for glioblastoma: current state and future directions. J. Exp. Clin. Cancer Res. 41, 142.
<https://doi.org/10.1186/s13046-022-02349-7>
17. , G., Lehrbach, N. (2023) Regulation and functions of the ER-associated Nrf1 transcription factor. Cold Spring Harb. Perspect. Biol. 15, a041266.
<https://doi.org/10.1101/cshperspect.a041266>
18. , L., Ouyang, N., Shafi, S., Zhao, R., Pan, J., Hong, L., Song, X., Sa, X., Zhou, Y. (2023) NRF1 regulates the epithelial mesenchymal transition of breast cancer by modulating ROS homeostasis. Technol. Cancer Res. Treat. 22, 15330338231161141.
<https://doi.org/10.1177/15330338231161141>
19. , Q., Li, S., Wang, Y., Peng, H., Zhang, X., Zheng, Y., Li, C., Li, L., Chen, R., Chen, X. (2018) Phosphoglyceric acid mutase-1 contributes to oncogenic mTOR-mediated tumor growth and confers non-small cell lung cancer patients with poor prognosis. Cell Death Differ. 25, 1160-1173.
<https://doi.org/10.1038/s41418-017-0034-y>
20. , Y., Tokar, E. J., Sun, Y., Waalkes, M. P. (2012) Arsenic-transformed malignant prostate epithelia can convert noncontiguous normal stem cells into an oncogenic phenotype. Environ. Health Perspect. 120, 865-871.
<https://doi.org/10.1289/ehp.1204987>
21. , J., Zhang, S., Zhang, Y. (2018) Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases. Toxicol. Appl. Pharmacol. 360, 273-283.
<https://doi.org/10.1016/j.taap.2018.09.037>
22. , B., Wang, G., Tang, X., Tong, A., Zhou, L. (2022) Immunotherapy of glioblastoma: recent advances and future prospects. Hum. Vaccin. Immunother. 18, 2055417.
<https://doi.org/10.1080/21645515.2022.2055417>
23. , Y., Xiang, Y. (2016) Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem. J. 473, 961-1000.
<https://doi.org/10.1042/BJ20151182>
24. , S., Deng, Y., Xiang, Y., Hu, S., Qiu, L., Zhang, Y. (2020) Synergism and antagonism of two distinct, but confused, Nrf1 factors in integral regulation of the nuclear-to-mitochondrial respiratory and antioxidant transcription networks. Oxid. Med. Cell. Longev. 2020, 5097109.
