Fol. Biol. 2023, 69, 22-33
https://doi.org/10.14712/fb2023069010022
Candidate Marker Genes for Diagnosis of Osteoarthritis and Prediction of Their Regulatory Mechanisms
References
1. 2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.
< , D. P. (https://doi.org/10.1016/j.cell.2009.01.002>
2. 2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115-2126.
< , J. W., Berenbaum, F., Lafeber, F. P. (https://doi.org/10.1016/S0140-6736(11)60243-2>
3. 2021) Accelerating functional gene discovery in osteoarthritis. Nat. Commun. 12, 467.
< , N. C., Curry, K. F., Steinberg, J., Dewhurst, H., Komla-Ebri, D., Mannan, N. S., Adoum, A. T., Leitch, V. D., Logan, J. G., Waung, J. A., Ghirardello, E., Southam, L., Youlten, S. E., Wilkinson, J. M., McAninch, E. A., Vancollie, V. E., Kussy, F., White, J. K., Lelliott, C. J., Adams, D. J., Jacques, R., Bianco, A. C., Boyde, A., Zeggini, E., Croucher, P. I., Williams, G. R., Bassett, J. H. D. (https://doi.org/10.1038/s41467-020-20761-5>
4. 2021a) Weighted gene co-expression network analysis reveals specific modules and hub genes related to immune infiltration of osteoarthritis. Ann. Transl. Med. 9, 1525.
< , J., Ding, H., Shang, J., Ma, L., Wang, Q., Feng, S. (https://doi.org/10.21037/atm-21-4566>
5. 2021b) Decreased miR-214-3p activates NF-κB pathway and aggravates osteoarthritis progression. EBioMedicine. 65, 103283.
< , Y., Tang, S., Nie, X., Zhou, Z., Ruan, G., Han, W., Zhu, Z., Ding, C. (https://doi.org/10.1016/j.ebiom.2021.103283>
6. 2003) Expression of adrenomedullin and its receptor by chondrocyte phenotype cells. Biochem. Biophys. Res. Commun. 303, 379-386.
< , E., Hamada, H., Kitamura, K., Kuwasako, K., Yanagita, T., Eto, T., Tajima, N. (https://doi.org/10.1016/S0006-291X(03)00347-4>
7. 2016) Demethylation of an NF-κB enhancer element orchestrates iNOS induction in osteoarthritis and is associated with altered chondrocyte cell cycle. Osteoarthritis Cartilage 24, 1951-1960.
< , M. C., Takahashi, A., Oreffo, R. O. (https://doi.org/10.1016/j.joca.2016.06.002>
8. 2015) Osteoarthritis. Lancet 386, 376-387.
< , S., Palmer, A. J., Agricola, R., Price, A. J., Vincent, T. L., Weinans, H., Carr, A. J. (https://doi.org/10.1016/S0140-6736(14)60802-3>
9. 2009) Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 44, 87-101.
< , B., Tsykin, A., Findlay, D. M., Fazzalari, N. L. (https://doi.org/10.1016/j.bone.2008.08.120>
10. 2017) CX3CL1 promotes MMP-3 production via the CX3CR1, c-Raf, MEK, ERK, and NF-κB signaling pathway in osteoarthritis synovial fibroblasts. Arthritis Res. Ther. 19, 282.
< , S. M., Hou, C. H., Liu, J. F. (https://doi.org/10.1186/s13075-017-1487-6>
11. 2008) Automatic Time Series Forecasting: the forecast Package for R. Journal of Statistical Software 27, 1–22.
< , R. J., Khandakar, Y. (https://doi.org/10.18637/jss.v027.i03>
12. 2004) Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp. Cell Res. 295, 469-487.
< , A., Vallon-Christersson, J., Holmquist, L., Axelson, H., Borg, A., Pahlman, S. (https://doi.org/10.1016/j.yexcr.2004.01.013>
13. 2014) The epidemiology of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 28, 5-15.
< , V. L., Hunter, D. J. (https://doi.org/10.1016/j.berh.2014.01.004>
14. 2009) Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clin. Exp. Immunol. 156, 312-319.
< , K., Volin, M. V., Huynh, N., Chong, K. K., Halloran, M. M., Woods, J. M. (https://doi.org/10.1111/j.1365-2249.2009.03903.x>
15. 2021) Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front. Cell Dev. Biol. 9, 774370.
< , H., Sun, M. L., Zhang, X. A., Wang, X. Q. (https://doi.org/10.3389/fcell.2021.774370>
16. 2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.
< , P., Horvath, S. (https://doi.org/10.1186/1471-2105-9-559>
17. 2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882-883.
< , J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., Storey, J. D. (https://doi.org/10.1093/bioinformatics/bts034>
18. 2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.
< , B. P., Burge, C. B., Bartel, D. P. (https://doi.org/10.1016/j.cell.2004.12.035>
19. 2023) Integrated analysis of transcriptome changes in osteoarthritis: gene expression, pathways and alternative splicing. Cartilage 14, 235-246.
< , C., Wei, P., Wang, L., Wang, Q., Wang, H., Zhang, Y. (https://doi.org/10.1177/19476035231154511>
20. 2020) MiR-1207-5p/CX3CR1 axis regulates the progression of osteoarthritis via the modulation of the activity of NF-κB pathway. Int. J. Rheum. Dis. 23, 1057-1065.
< , X. C., Xu, L., Cai, Y. L., Zheng, Z. Y., Dai, E. N., Sun, S. (https://doi.org/10.1111/1756-185X.13898>
21. 2021) Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res. Ther. 23, 142.
< , J., Zhang, H., Pan, J., Hu, Z., Liu, L., Liu, Y., Yu, X., Bai, X., Cai, D., Zhang, H. (https://doi.org/10.1186/s13075-021-02512-z>
22. 2017) WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol. 585, 135-158.
< , G., Chen, L., Zhang, W. (https://doi.org/10.1016/bs.mie.2016.09.016>
23. 2020) Integration of transcriptome-wide association study and messenger RNA expression profile to identify genes associated with osteoarthritis. Bone Joint Res. 9, 130-138.
< , X., Yu, F., Wen, Y., Li, P., Cheng, B., Ma, M., Cheng, S., Zhang, L., Liang, C., Liu, L., Zhang, F. (https://doi.org/10.1302/2046-3758.93.BJR-2019-0137.R1>
24. 2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47.
< , M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., Smyth, G. K. (https://doi.org/10.1093/nar/gkv007>
25. 2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77.
< , X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., Muller, M. (https://doi.org/10.1186/1471-2105-12-77>
26. 2010) Osteoarthritis: etiology, epidemiology, impact on the individual and society and the main principles of management. Medicina (Kaunas) 46, 790-797.
< , G., Jauniskiene, D. (https://doi.org/10.3390/medicina46110111>
27. 2016) CCAAT/enhancer binding protein beta (C/EBPβ) regulates the transcription of growth arrest and DNA damage-inducible protein 45 beta (GADD45β) in articular chondrocytes. Pathol. Res. Pract. 212, 302-309.
< , H., Otero, M., Tsuchimochi, K., Yamasaki, S., Sakakima, H., Matsuda, F., Sakasegawa, M., Setoguchi, T., Xu, L., Goldring, M. B., Tanimoto, A., Komiya, S., Ijiri, K. (https://doi.org/10.1016/j.prp.2016.01.009>
28. 2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13, e0206239.
< , C., De La Torre, C., Parveen, A., Gretz, N. (https://doi.org/10.1371/journal.pone.0206239>
29. 2017) CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/β-catenin signaling. Biomed. Pharmacother. 96, 1317-1323.
< , Y., Wang, F., Sun, X., Wang, X., Zhang, L., Li, Y. (https://doi.org/10.1016/j.biopha.2017.11.080>
30. 2006) A critical role for adrenomedullin-calcitonin receptor-like receptor in regulating rheumatoid fibroblast-like synoviocyte apoptosis. J. Immunol. 176, 5548-5558.
< , B., Ea, H. K., Launay, J. M., Garel, J. M., Champy, R., Cressent, M., Liote, F. (https://doi.org/10.4049/jimmunol.176.9.5548>
31. 2016) Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat. Rev. Rheumatol. 12, 211-220.
< , R., Noel, D., Pers, Y. M., Apparailly, F., Jorgensen, C. (https://doi.org/10.1038/nrrheum.2015.162>
32. 2018) Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp. Eye Res. 166, 13-20.
< , Q., Tang, J., Han, Y., Wang, D. (https://doi.org/10.1016/j.exer.2017.10.007>
33. 2014) The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Arch. Immunol. Ther. Exp. (Warsz) 62, 395-403.
< , P., Poniatowski, L. A., Kotela, A., Deszczynski, J., Kotela, I., Szukiewicz, D. (https://doi.org/10.1007/s00005-014-0275-0>
34. 2020) Comparative analysis of the occurrence and role of CX3CL1 (fractalkine) and its receptor CX3CR1 in hemophilic arthropathy and osteoarthritis. J. Immunol. Res. 2020, 2932696.
, P., Poniatowski, L. A., Kotela, A., Skoda, M., Pyzlak, M., Stangret, A., Kotela, I., Szukiewicz, D. (
35. 2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb.) 2, 100141.
, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., Yu, G. (
36. 2007) Recruitment of CD16+ monocytes into synovial tissues is mediated by fractalkine and CX3CR1 in rheumatoid arthritis patients. Acta Med. Okayama 61, 89-98.
, R., Yamamura, M., Sunahori, K., Takasugi, K., Yamana, J., Kawashima, M., Makino, H. (
37. 2022) A novel hypoxia related marker in blood link to aid diagnosis and therapy in osteoarthritis. Genes (Basel) 13, 1501.
< , S., Deng, M., Du, X., Huang, R., Chen, Q. (https://doi.org/10.3390/genes13091501>
38. 2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.
< , G., Wang, L. G., Han, Y., He, Q. Y. (https://doi.org/10.1089/omi.2011.0118>
39. 2015) DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31, 608-609.
< , G., Wang, L. G., Yan, G. R., He, Q. Y. (https://doi.org/10.1093/bioinformatics/btu684>
40. 2020a) Cell cycle-related lncRNAs and mRNAs in osteoarthritis chondrocytes in a Northwest Chinese Han Population. Medicine (Baltimore) 99, e19905.
< , F., Lammi, M. J., Tan, S., Meng, P., Wu, C., Guo, X. (https://doi.org/10.1097/MD.0000000000019905>
41. 2020b) Identification of microRNA3633p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53 signaling pathway. Mol. Med. Rep. 21, 1077-1088.
, M., Wang, Z., Li, B., Sun, F., Chen, A., Gong, M. (
42. 2020c) The therapeutic effects of edaravone on collagen-induced arthritis in rats. J. Cell. Biochem. 121, 1463-1474.
< , X., Ye, G., Wu, Z., Zou, K., He, X., Xu, X., Yao, J., Wei, Q. (https://doi.org/10.1002/jcb.29382>
43. 2022) Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat. Commun. 13, 2447.
< , Y., Li, S., Jin, P., Shang, T., Sun, R., Lu, L., Guo, K., Liu, J., Tong, Y., Wang, J., Liu, S., Wang, C., Kang, Y., Zhu, W., Wang, Q., Zhang, X., Yin, F., Sun, Y. E., Cui, L. (https://doi.org/10.1038/s41467-022-30119-8>
44. 2019) Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm. Sin. B. 9, 973-985.
< , F., Mei, J., Han, X., Li, H., Yang, S., Wang, M., Chu, L., Qiao, H., Tang, T. (https://doi.org/10.1016/j.apsb.2019.01.015>
45. 2022) Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 8, eabk0011.
< , J., Yang, S., Qi, Y., Gong, Z., Zhang, H., Liang, K., Shen, P., Huang, Y. Y., Zhang, Z., Ye, W., Yue, L., Fan, S., Shen, S., Mikos, A. G., Wang, X., Fang, X. (https://doi.org/10.1126/sciadv.abk0011>