Fol. Biol. 2023, 69, 22-33

https://doi.org/10.14712/fb2023069010022

Candidate Marker Genes for Diagnosis of Osteoarthritis and Prediction of Their Regulatory Mechanisms

Zuyang Zhang, Wei Liu, Jiepeng Xiong, Tianhua Chen, Liangdong Jiang, Mingjiang Liu

Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China

Received February 2023
Accepted July 2023

References

1. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. <https://doi.org/10.1016/j.cell.2009.01.002>
2. Bijlsma, J. W., Berenbaum, F., Lafeber, F. P. (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115-2126. <https://doi.org/10.1016/S0140-6736(11)60243-2>
3. Butterfield, N. C., Curry, K. F., Steinberg, J., Dewhurst, H., Komla-Ebri, D., Mannan, N. S., Adoum, A. T., Leitch, V. D., Logan, J. G., Waung, J. A., Ghirardello, E., Southam, L., Youlten, S. E., Wilkinson, J. M., McAninch, E. A., Vancollie, V. E., Kussy, F., White, J. K., Lelliott, C. J., Adams, D. J., Jacques, R., Bianco, A. C., Boyde, A., Zeggini, E., Croucher, P. I., Williams, G. R., Bassett, J. H. D. (2021) Accelerating functional gene discovery in osteoarthritis. Nat. Commun. 12, 467. <https://doi.org/10.1038/s41467-020-20761-5>
4. Cao, J., Ding, H., Shang, J., Ma, L., Wang, Q., Feng, S. (2021a) Weighted gene co-expression network analysis reveals specific modules and hub genes related to immune infiltration of osteoarthritis. Ann. Transl. Med. 9, 1525. <https://doi.org/10.21037/atm-21-4566>
5. Cao, Y., Tang, S., Nie, X., Zhou, Z., Ruan, G., Han, W., Zhu, Z., Ding, C. (2021b) Decreased miR-214-3p activates NF-κB pathway and aggravates osteoarthritis progression. EBioMedicine. 65, 103283. <https://doi.org/10.1016/j.ebiom.2021.103283>
6. Chosa, E., Hamada, H., Kitamura, K., Kuwasako, K., Yanagita, T., Eto, T., Tajima, N. (2003) Expression of adrenome­dullin and its receptor by chondrocyte phenotype cells. Biochem. Biophys. Res. Commun. 303, 379-386. <https://doi.org/10.1016/S0006-291X(03)00347-4>
7. de Andres, M. C., Takahashi, A., Oreffo, R. O. (2016) Demethylation of an NF-κB enhancer element orchestrates iNOS induction in osteoarthritis and is associated with altered chondrocyte cell cycle. Osteoarthritis Cartilage 24, 1951-1960. <https://doi.org/10.1016/j.joca.2016.06.002>
8. Glyn-Jones, S., Palmer, A. J., Agricola, R., Price, A. J., Vincent, T. L., Weinans, H., Carr, A. J. (2015) Osteoarthritis. Lancet 386, 376-387. <https://doi.org/10.1016/S0140-6736(14)60802-3>
9. Hopwood, B., Tsykin, A., Findlay, D. M., Fazzalari, N. L. (2009) Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 44, 87-101. <https://doi.org/10.1016/j.bone.2008.08.120>
10. Hou, S. M., Hou, C. H., Liu, J. F. (2017) CX3CL1 promotes MMP-3 production via the CX3CR1, c-Raf, MEK, ERK, and NF-κB signaling pathway in osteoarthritis synovial fibroblasts. Arthritis Res. Ther. 19, 282. <https://doi.org/10.1186/s13075-017-1487-6>
11. Hyndman, R. J., Khandakar, Y. (2008) Automatic Time Series Forecasting: the forecast Package for R. Journal of Statistical Software 27, 1–22. <https://doi.org/10.18637/jss.v027.i03>
12. Jogi, A., Vallon-Christersson, J., Holmquist, L., Axelson, H., Borg, A., Pahlman, S. (2004) Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp. Cell Res. 295, 469-487. <https://doi.org/10.1016/j.yexcr.2004.01.013>
13. Johnson, V. L., Hunter, D. J. (2014) The epidemiology of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 28, 5-15. <https://doi.org/10.1016/j.berh.2014.01.004>
14. Klosowska, K., Volin, M. V., Huynh, N., Chong, K. K., Halloran, M. M., Woods, J. M. (2009) Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clin. Exp. Immunol. 156, 312-319. <https://doi.org/10.1111/j.1365-2249.2009.03903.x>
15. Kong, H., Sun, M. L., Zhang, X. A., Wang, X. Q. (2021) Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front. Cell Dev. Biol. 9, 774370. <https://doi.org/10.3389/fcell.2021.774370>
16. Langfelder, P., Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559. <https://doi.org/10.1186/1471-2105-9-559>
17. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., Storey, J. D. (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882-883. <https://doi.org/10.1093/bioinformatics/bts034>
18. Lewis, B. P., Burge, C. B., Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. <https://doi.org/10.1016/j.cell.2004.12.035>
19. Li, C., Wei, P., Wang, L., Wang, Q., Wang, H., Zhang, Y. (2023) Integrated analysis of transcriptome changes in osteoarthritis: gene expression, pathways and alternative splicing. Cartilage 14, 235-246. <https://doi.org/10.1177/19476035231154511>
20. Liu, X. C., Xu, L., Cai, Y. L., Zheng, Z. Y., Dai, E. N., Sun, S. (2020) MiR-1207-5p/CX3CR1 axis regulates the progression of osteoarthritis via the modulation of the activity of NF-κB pathway. Int. J. Rheum. Dis. 23, 1057-1065. <https://doi.org/10.1111/1756-185X.13898>
21. Lu, J., Zhang, H., Pan, J., Hu, Z., Liu, L., Liu, Y., Yu, X., Bai, X., Cai, D., Zhang, H. (2021) Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res. Ther. 23, 142. <https://doi.org/10.1186/s13075-021-02512-z>
22. Pei, G., Chen, L., Zhang, W. (2017) WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol. 585, 135-158. <https://doi.org/10.1016/bs.mie.2016.09.016>
23. Qi, X., Yu, F., Wen, Y., Li, P., Cheng, B., Ma, M., Cheng, S., Zhang, L., Liang, C., Liu, L., Zhang, F. (2020) Integration of transcriptome-wide association study and messenger RNA expression profile to identify genes associated with osteoarthritis. Bone Joint Res. 9, 130-138. <https://doi.org/10.1302/2046-3758.93.BJR-2019-0137.R1>
24. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47. <https://doi.org/10.1093/nar/gkv007>
25. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., Muller, M. (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77. <https://doi.org/10.1186/1471-2105-12-77>
26. Sakalauskiene, G., Jauniskiene, D. (2010) Osteoarthritis: etiology, epidemiology, impact on the individual and society and the main principles of management. Medicina (Kaunas) 46, 790-797. <https://doi.org/10.3390/medicina46110111>
27. Shimada, H., Otero, M., Tsuchimochi, K., Yamasaki, S., Sakakima, H., Matsuda, F., Sakasegawa, M., Setoguchi, T., Xu, L., Goldring, M. B., Tanimoto, A., Komiya, S., Ijiri, K. (2016) CCAAT/enhancer binding protein beta (C/EBPβ) regulates the transcription of growth arrest and DNA damage-inducible protein 45 beta (GADD45β) in articular chondrocytes. Pathol. Res. Pract. 212, 302-309. <https://doi.org/10.1016/j.prp.2016.01.009>
28. Sticht, C., De La Torre, C., Parveen, A., Gretz, N. (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13, e0206239. <https://doi.org/10.1371/journal.pone.0206239>
29. Sun, Y., Wang, F., Sun, X., Wang, X., Zhang, L., Li, Y. (2017) CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/β-catenin signaling. Biomed. Pharmacother. 96, 1317-1323. <https://doi.org/10.1016/j.biopha.2017.11.080>
30. Uzan, B., Ea, H. K., Launay, J. M., Garel, J. M., Champy, R., Cressent, M., Liote, F. (2006) A critical role for adrenomedullin-calcitonin receptor-like receptor in regulating rheumatoid fibroblast-like synoviocyte apoptosis. J. Immunol. 176, 5548-5558. <https://doi.org/10.4049/jimmunol.176.9.5548>
31. Vicente, R., Noel, D., Pers, Y. M., Apparailly, F., Jorgensen, C. (2016) Deregulation and therapeutic potential of micro­RNAs in arthritic diseases. Nat. Rev. Rheumatol. 12, 211-220. <https://doi.org/10.1038/nrrheum.2015.162>
32. Wan, Q., Tang, J., Han, Y., Wang, D. (2018) Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp. Eye Res. 166, 13-20. <https://doi.org/10.1016/j.exer.2017.10.007>
33. Wojdasiewicz, P., Poniatowski, L. A., Kotela, A., Deszczynski, J., Kotela, I., Szukiewicz, D. (2014) The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Arch. Immunol. Ther. Exp. (Warsz) 62, 395-403. <https://doi.org/10.1007/s00005-014-0275-0>
34. Wojdasiewicz, P., Poniatowski, L. A., Kotela, A., Skoda, M., Pyzlak, M., Stangret, A., Kotela, I., Szukiewicz, D. (2020) Comparative analysis of the occurrence and role of CX3CL1 (fractalkine) and its receptor CX3CR1 in hemophilic arthropathy and osteoarthritis. J. Immunol. Res. 2020, 2932696.
35. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., Yu, G. (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb.) 2, 100141.
36. Yano, R., Yamamura, M., Sunahori, K., Takasugi, K., Yamana, J., Kawashima, M., Makino, H. (2007) Recruitment of CD16+ monocytes into synovial tissues is mediated by fractalkine and CX3CR1 in rheumatoid arthritis patients. Acta Med. Okayama 61, 89-98.
37. Yao, S., Deng, M., Du, X., Huang, R., Chen, Q. (2022) A novel hypoxia related marker in blood link to aid diagnosis and therapy in osteoarthritis. Genes (Basel) 13, 1501. <https://doi.org/10.3390/genes13091501>
38. Yu, G., Wang, L. G., Han, Y., He, Q. Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. <https://doi.org/10.1089/omi.2011.0118>
39. Yu, G., Wang, L. G., Yan, G. R., He, Q. Y. (2015) DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31, 608-609. <https://doi.org/10.1093/bioinformatics/btu684>
40. Zhang, F., Lammi, M. J., Tan, S., Meng, P., Wu, C., Guo, X. (2020a) Cell cycle-related lncRNAs and mRNAs in osteoarthritis chondrocytes in a Northwest Chinese Han Population. Medicine (Baltimore) 99, e19905. <https://doi.org/10.1097/MD.0000000000019905>
41. Zhang, M., Wang, Z., Li, B., Sun, F., Chen, A., Gong, M. (2020b) Identification of microRNA3633p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53 signaling pathway. Mol. Med. Rep. 21, 1077-1088.
42. Zhang, X., Ye, G., Wu, Z., Zou, K., He, X., Xu, X., Yao, J., Wei, Q. (2020c) The therapeutic effects of edaravone on collagen-induced arthritis in rats. J. Cell. Biochem. 121, 1463-1474. <https://doi.org/10.1002/jcb.29382>
43. Zhang, Y., Li, S., Jin, P., Shang, T., Sun, R., Lu, L., Guo, K., Liu, J., Tong, Y., Wang, J., Liu, S., Wang, C., Kang, Y., Zhu, W., Wang, Q., Zhang, X., Yin, F., Sun, Y. E., Cui, L. (2022) Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat. Commun. 13, 2447. <https://doi.org/10.1038/s41467-022-30119-8>
44. Zhou, F., Mei, J., Han, X., Li, H., Yang, S., Wang, M., Chu, L., Qiao, H., Tang, T. (2019) Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm. Sin. B. 9, 973-985. <https://doi.org/10.1016/j.apsb.2019.01.015>
45. Zhu, J., Yang, S., Qi, Y., Gong, Z., Zhang, H., Liang, K., Shen, P., Huang, Y. Y., Zhang, Z., Ye, W., Yue, L., Fan, S., Shen, S., Mikos, A. G., Wang, X., Fang, X. (2022) Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 8, eabk0011. <https://doi.org/10.1126/sciadv.abk0011>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive