Fol. Biol. 2023, 69, 59-68

https://doi.org/10.14712/fb2023069020059

Correlation of Short Leukocyte Telomeres and Oxidative Stress with the Presence and Severity of Lung Cancer Explored by Principal Component Analysis

Milica Belić1, Miron Sopić2, Marina Roksandić-Milenković3, Vesna Ćeriman4, Azra Guzonijić2, Aleksandra Vukašinović5, Barbara Ostanek6, Nemanja Dimić7, Dragana Jovanović8, Jelena Kotur-Stevuljević2

1PrimeVigilance d.o.o., Belgrade, Serbia
2Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
3Municipality Institute for Lung Diseases and Tuberculosis, Belgrade, Serbia
4Institute for Lung Diseases, Thoracic Surgery and Tuberculosis, Clinical Center of Serbia, Belgrade, Serbia
5Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
6Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
7University Clinical-Hospital Center Dr. Dragisa Misovic, Belgrade, Serbia
8Internal Medicine Clinic “Akta Medica”, Belgrade, Serbia

Received June 2023
Accepted October 2023

References

1. Aviv, A. (2020) Telomeres and COVID-19. FASEB J. 34, 7247-7252. <https://doi.org/10.1096/fj.202001025>
2. Bar-Or, D., Lau, E., Winkler, J. V. (2000) A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia: a preliminary report. J. Emerg. Med. 19, 311-315. <https://doi.org/10.1016/S0736-4679(00)00255-9>
3. Barczak, W., Rozwadowska, N., Romaniuk, A. et al. (2016) Telomere length assessment in leukocytes presents potential diagnostic value in patients with breast cancer. Oncol. Lett. 11, 2305-2309. <https://doi.org/10.3892/ol.2016.4188>
4. Bernardes de Jesus, B., Blasco, M. A. (2013) Telomerase at the intersection of cancer and aging. Trends Genet. 29, 513-520. <https://doi.org/10.1016/j.tig.2013.06.007>
5. Blackburn, E. H., Epel, E. S., Lin, J. (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193-1198. <https://doi.org/10.1126/science.aab3389>
6. Brahmer, J. R. (2013) Harnessing the immune system for the treatment of non-small-cell lung cancer. J. Clin. Oncol. 31, 1021-1028. <https://doi.org/10.1200/JCO.2012.45.8703>
7. Burkholder, B., Huang, R. Y., Burgess, R. et al. (2014) Tumor-induced perturbations of cytokines and immune cell networks. Biochim. Biophys. Acta 1845, 182-201.
8. Cawthon, R. M. (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47. <https://doi.org/10.1093/nar/30.10.e47>
9. Chen, Y., Qu, F., He, X. et al. (2014) Short leukocyte telomere length predicts poor prognosis and indicates altered immune functions in colorectal cancer patients. Ann. Oncol. 25, 869-876. <https://doi.org/10.1093/annonc/mdu016>
10. Chen, M., Tsai, C. W., Shang, W. S. et al. (2020) Prognostic value of leukocyte telomere length in renal cell carcinoma patients. Am. J. Cancer Res. 10, 3428-3439.
11. Chen, Y., Wu, Y., Huang, X. et al. (2015) Leukocyte telomere length: a novel biomarker to predict the prognosis of glioma patients. J. Cancer Res. Clin. Oncol. 141, 1739-1747. <https://doi.org/10.1007/s00432-015-1938-x>
12. de Groot, P. M., Wu, C. C., Carter, B. W. et al. (2018) The epidemiology of lung cancer. Transl. Lung Cancer Res. 7, 220-233. <https://doi.org/10.21037/tlcr.2018.05.06>
13. De-Torres, J. P., Sanchez-Salcedo, P., Bastarrika, G. et al. (2017) Telomere length, COPD, and emphysema as risk factors for lung cancer. Eur. Respir. J. 49, 1-4. <https://doi.org/10.1183/13993003.01521-2016>
14. Dela Cruz, C. S., Tanoue, L. T., Matthay, R. A. (2011) Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32, 605-644. <https://doi.org/10.1016/j.ccm.2011.09.001>
15. Dhabhar, F. S., Malarkey, W. B., Neri, E. et al. (2012) Stress-induced redistribution of immune cells – from barracks to boulevards to battlefields: a tale of three hormones – Curt Richter Award winner. Psychoneuroendocrinology. 37, 1345-1368. <https://doi.org/10.1016/j.psyneuen.2012.05.008>
16. Effros, R. B. (2011) Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp. Gerontol. 46, 135-140. <https://doi.org/10.1016/j.exger.2010.08.027>
17. Ennour-Idrissi, K., Maunsell, E., Diorio, C. (2017) Telomere length and breast cancer prognosis: a systematic review. Cancer Epidemiol. Biomarkers Prev. 26, 3-10. <https://doi.org/10.1158/1055-9965.EPI-16-0343>
18. Fali, T., Papagno, L., Bayard, C. et al. (2019) New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J. Immunol. 202, 1962-1969. <https://doi.org/10.4049/jimmunol.1801475>
19. Ferlay, J., Colombet, M., Soerjomataram, I. et al. (2021) Cancer statistics for the year 2020: an overview. Int. J. Cancer 149, 778-789. <https://doi.org/10.1002/ijc.33588>
20. Fitzmaurice, C., Abate, D., Abbasi, N. et al. (2019) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 5, 1749-1768.
21. Gallicchio, L., Gadalla, S. M., Murphy, J. D. et al. (2018) The effect of cancer treatments on telomere length: a systematic review of the literature. J. Natl. Cancer Inst. 110, 1048-1058. <https://doi.org/10.1093/jnci/djy189>
22. Gómes, M., Teixeira, A. L., Coelho, A. et al. (2016) Inflammation and lung cancer: oxidative stress, ROS, and DNA damage. In: Reactive Oxygen Species in Biology and Human Health, ed. Ahmad, S. I, pp. 215-223, CRC Press, Boca Raton.
23. Gonzalez, H., Hagerling, C., Werb, Z. (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267-1284. <https://doi.org/10.1101/gad.314617.118>
24. Heaphy, C. M., Meeker, A. K. (2011) The potential utility of telomere-related markers for cancer diagnosis. J. Cell. Mol. Med. 15, 1227-1238. <https://doi.org/10.1111/j.1582-4934.2011.01284.x>
25. Hiam-Galvez, K. J., Allen, B. M., Spitzer, M. H. (2021) Systemic immunity in cancer. Nat. Rev. Cancer 21, 345-359. <https://doi.org/10.1038/s41568-021-00347-z>
26. Hopewell, E. L., Zhao, W., Fulp, W. J. et al. (2013) Lung tumor NF-κB signaling promotes T cell-mediated immune surveillance. J. Clin. Invest. 123, 2509-2522. <https://doi.org/10.1172/JCI67250>
27. Hosmer, D. W. Jr., Lemeshow, S. (1989) Applied Logistic Regression. Wiley, New York.
28. Kachuri, L., Saarela, O., Bojesen, S. E. et al. (2019) Mendelian randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. Int. J. Epidemiol. 48, 751-766. <https://doi.org/10.1093/ije/dyy140>
29. Karimi, B., Yunesian, M., Nabizadeh, R. et al. (2017) Is leucocyte telomere length related with lung cancer risk?: a meta-analysis. Iran. Biomed. J. 21, 142-153.
30. Kotur-Stevuljevic, J., Bogavac-Stanojevic, N., Jelic-Ivanovic, Z. et al. (2015) Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis 241, 192-198. <https://doi.org/10.1016/j.atherosclerosis.2015.05.016>
31. Lim, R. J., Liu, B., Krysan, K. et al. (2020) Lung cancer and immunity markers. Cancer Epidemiol. Biomarkers Prev. 29, 2423-2430. <https://doi.org/10.1158/1055-9965.EPI-20-0716>
32. Matsuda, Y., Ye, J., Yamakawa, K. et al. (2023). Association of longer telomere length in cancer cells and cancer-associated fibroblasts with worse prognosis. J. Natl. Cancer Inst. 115, 208-218. <https://doi.org/10.1093/jnci/djac226>
33. Miura, N., Nakamura, H., Sato, R. (2006) Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Sci. 97, 1366-1373. <https://doi.org/10.1111/j.1349-7006.2006.00342.x>
34. Morry, J., Ngamcherdtrakul, W., Yantasee, W. (2017) Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 11, 240-253. <https://doi.org/10.1016/j.redox.2016.12.011>
35. Mu, C. Y., Huang, J. A., Chen, Y. et al. (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med. Oncol. 28, 682-688. <https://doi.org/10.1007/s12032-010-9515-2>
36. Nelson, C. P., Codd, V. (2020) Genetic determinants of telomere length and cancer risk. Curr. Opin. Genet. Dev. 60, 63-68. <https://doi.org/10.1016/j.gde.2020.02.007>
37. Nicholson, A. G., Tsao, M. S., Beasley, M. B. et al. (2022) The 2021 WHO classification of lung tumors: impact of advances since 2015. J. Thorac. Oncol. 17, 362-387. <https://doi.org/10.1016/j.jtho.2021.11.003>
38. Nishino, M., Hatabu, H., Johnson, B. E. et al. (2014) State of the art: response assessment in lung cancer in era of genomic medicine. Radiology 271, 6-27. <https://doi.org/10.1148/radiol.14122524>
39. Park, J. Y., Luu, H. N., Park, H. Y. (2019) Telomere length in peripheral blood leukocytes and risk of renal cell carcinoma. Transl. Cancer Res. 8, 397-403. <https://doi.org/10.21037/tcr.2019.06.36>
40. Planchard, D., Popat, S., Kerr, K. (2018) Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, 192-237. <https://doi.org/10.1093/annonc/mdy275>
41. Qian, Y., Ding, T., Wei, L. (2016) Shorter telomere length of T-cells in peripheral blood of patients with lung cancer. Onco Targets Ther. 9, 2675-2682.
42. Qu, F., Li, R., He, R. et al. (2015) Short telomere length in peripheral blood leukocyte predicts poor prognosis and indicates an immunosuppressive phenotype in gastric cancer patients. Mol. Oncol. 9, 727-739. <https://doi.org/10.1016/j.molonc.2014.11.008>
43. Samavat, H., Luu, H. N., Beckman, K. B. et al. (2021) Leukocyte telomere length, cancer incidence and all-cause mortality among Chinese adults: Singapore Chinese health study. Int. J. Cancer 148, 352-362. <https://doi.org/10.1002/ijc.33211>
44. Semeraro, M. D., Smith, C., Kaiser, M. et al. (2020) Physical activity, a modulator of aging through effects on telomere biology. Aging 12, 13803-13823. <https://doi.org/10.18632/aging.103504>
45. Seow, W. J., Cawthon, R. M., Purdue, M. P. et al. (2014) Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res. 74, 4090-4098. <https://doi.org/10.1158/0008-5472.CAN-14-0459>
46. Vaiserman, A., Krasnienkov, D. (2021) Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet. 11, 1-20. <https://doi.org/10.3389/fgene.2020.630186>
47. Valavanidis, A., Vlachogianni, T., Fiotakis, K. et al. (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 10, 3886-3907. <https://doi.org/10.3390/ijerph10093886>
48. Valiathan, R., Deeb, K., Diamante, M. et al. (2014) Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. Immunobiology 219, 487-496. <https://doi.org/10.1016/j.imbio.2014.02.010>
49. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. et al. (2011) Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235-271. <https://doi.org/10.1146/annurev-immunol-031210-101324>
50. Weng, M. S., Chang, J. H., Hung, W. Y. et al. (2018) The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 16, 37-61. <https://doi.org/10.1186/s13046-018-0689-3>
51. Xue, Y., Guo, X., Huang, Z. et al. (2020) Shortened telomere length in peripheral blood leukocytes of patients with lung cancer, chronic obstructive pulmonary disease in a high indoor air pollution region in China. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 503250, 858-860.
52. Yang, L., Mailloux, A., Rollison, D. E. et al. (2013) Naive T-cells in myelodysplastic syndrome display intrinsic human telomerase reverse transcriptase (hTERT) deficiency. Leukemia 27, 897-906. <https://doi.org/10.1038/leu.2012.300>
53. Yuan, J. M., Beckman, K. B., Wang, R. (2018) Leukocyte telomere length in relation to risk of lung adenocarcinoma incidence: findings from the Singapore Chinese health study. Int. J. Cancer 142, 2234-2243. <https://doi.org/10.1002/ijc.31251>
54. Yuan, P., Huang, S., Bao, F. C. et al. (2019) Discriminating association of a common telomerase reverse transcriptase promoter polymorphism with telomere parameters in non-small cell lung cancer with or without epidermal growth factor receptor mutation. Eur. J. Cancer 120, 10-19. <https://doi.org/10.1016/j.ejca.2019.06.024>
55. Zhang, C., Chen, X., Li, L. et al. (2015) The association between telomere length and cancer prognosis: evidence from a meta-analysis. PLoS One 10, e0133174. <https://doi.org/10.1371/journal.pone.0133174>
56. Zhang, X., Wang, D., Li, Z. et al. (2020) Low-dose gemcitabine treatment enhances immunogenicity and natural killer cell-driven tumor immunity in lung cancer. Front. Immunol. 11, 1-14.
57. Zhu, X., Han, W., Xue, W. et al. (2016) The association between telomere length and cancer risk in population studies. Sci. Rep. 6, 1-10.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive