Fol. Biol. 2023, 69, 41-49
https://doi.org/10.14712/fb2023069020041
Pathogenesis of Collagen-Induced Arthritis: Role of Immune Cells with Associated Cytokines and Antibodies, Comparison with Rheumatoid Arthritis
References
1. , S., Williams, R. O. (2011) Effector T cells in rheumatoid arthritis: lessons from animal models. FEBS Lett. 585, 3649-3659.
<https://doi.org/10.1016/j.febslet.2011.04.034>
2. , J., Pardoll, D., Pan, F. (2013) Metabolic control of the Treg/Th17 axis. Immunol. Rev. 252, 52-77.
<https://doi.org/10.1111/imr.12029>
3. , B., Firestein, G. S. (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233-255.
<https://doi.org/10.1111/j.0105-2896.2009.00859.x>
4. , L., Menshikov, I. (2010) Role of idiotype-anti-idiotype interactions in the induction of collagen-induced arthritis in rats. Immunobiology 215, 963-970.
<https://doi.org/10.1016/j.imbio.2009.12.001>
5. , D. D., Kang, A. H., Rosloniec, E. F. (2003) Immunopathogenesis of collagen arthritis. Springer Semin. Immunopathol. 25, 3-18.
<https://doi.org/10.1007/s00281-003-0127-1>
6. , D. D., Latham, K. A., Rosloniec, E. F. (2007) Collagen-induced arthritis. Nat. Protoc. 2, 1269-1275.
<https://doi.org/10.1038/nprot.2007.173>
7. , K., Gerstner, C., Malmstrom, V. (2019) Effector functions of CD4+ T cells at the site of local autoimmune inflammation – lessons from rheumatoid arthritis. Front. Immunol. 10, 353.
<https://doi.org/10.3389/fimmu.2019.00353>
8. , M. L., Jung, Y. O., Kim, K. W. et al. (2008) IL-17 induces the production of IL-16 in rheumatoid arthritis. Exp. Mol. Med. 40, 237-245.
<https://doi.org/10.3858/emm.2008.40.2.237>
9. , Y. G., Cho, M. L., Min, S. Y (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun. Rev. 7, 65-70.
<https://doi.org/10.1016/j.autrev.2007.08.001>
10. Chondrex (2015) Collagen Induced Arthritis Protocol. 1–5. Retrieved from: https://www.chondrex.com/collagen-induced-arthritis
11. , N., Bhatt, L. K., Prabhavalkar, K. S. (2018) Experimental animal models for rheumatoid arthritis. Immunopharmacol. Immunotoxicol. 40, 193-200.
<https://doi.org/10.1080/08923973.2018.1434793>
12. , K. N., Willis, V. C., Haskins, K. et al. (2013) A citrullinated fibrinogen-specific T cell line enhances autoimmune arthritis in a mouse model of rheumatoid arthritis. J. Immunol. 190, 1457-1465.
<https://doi.org/10.4049/jimmunol.1201517>
13. , F. (2019) Pathogenic effects of anti-citrullinated protein antibodies in rheumatoid arthritis – role for glycosylation. Joint Bone Spine 86, 562-567.
<https://doi.org/10.1016/j.jbspin.2019.01.005>
14. , A., Habir, K., Nandakumar, K. S. et al. (2018) Germinal center B cells are essential for collagen-induced arthritis. Arthritis Rheumatol. 70, 193-203.
<https://doi.org/10.1002/art.40354>
15. , M., Vestberg, M., Johansson, A. C. et al. (2001) Influence of CD4 or CD8 deficiency on collagen-induced arthritis. Immunology 103, 291-300.
<https://doi.org/10.1046/j.1365-2567.2001.01257.x>
16. EMA (2023) Database of Medicines, European Medicines Agency. Retrieved from: https://www.ema.europa.eu/en/medicines
17. , M., Li, Y., Yao, C. (2018) Dihydroartemisinin derivative DC32 attenuates collagen-induced arthritis in mice by restoring the Treg/Th17 balance and inhibiting synovitis through down-regulation of IL-6. Int. Immunopharmacol. 65, 233-243.
<https://doi.org/10.1016/j.intimp.2018.10.015>
18. , M., Raposo, B., Ekman, D. et al. (2012) Genetic control of antibody production during collagen-induced arthritis development in heterogeneous stock mice. Arthritis Rheum. 64, 3594-3603.
<https://doi.org/10.1002/art.34658>
19. , M. M., Remmers, E. F. (2001) Genetic analysis of collagen-induced arthritis in rats: a polygenic model for rheumatoid arthritis predicts a common framework of cross-species inflammatory/autoimmune disease loci. Immunol. Rev. 184, 172-183.
<https://doi.org/10.1034/j.1600-065x.2001.1840116.x>
20. , S. Y., Rhee, K. J., Sung, H. J. (2018) Gene and protein expression profiles in a mouse model of collagen-induced arthritis. Int. J. Med. Sci. 15, 77-85.
<https://doi.org/10.7150/ijms.22345>
21. , S. M., Abdeltawab, N. F., Rashed, L. A. et al. (2019) Combination therapy of mesenchymal stromal cells and interleukin-4 attenuates rheumatoid arthritis in a collagen-induced murine model. Cells 8, 823.
<https://doi.org/10.3390/cells8080823>
22. , J., Li, X., Zhuang, J. et al. (2018) Blocking matrix metalloproteinase-9 abrogates collagen-induced arthritis via inhibiting dendritic cell migration. J. Immunol. 201, 3514-3523.
<https://doi.org/10.4049/jimmunol.1800412>
23. , V. M., Banda, N. K. (2018) Complement in the initiation and evolution of rheumatoid arthritis. Front. Immunol. 9, 1057.
<https://doi.org/10.3389/fimmu.2018.01057>
24. , R., Bockermann, R., Backlund, J. et al. (2002) The molecular pathogenesis of collagen-induced arthritis in mice – a model for rheumatoid arthritis. Ageing Res. Rev. 1, 135-147.
<https://doi.org/10.1016/S0047-6374(01)00371-2>
25. , Y., Yang, Y., Luo, B. (2017) Evaluation of destruction in a collagen-induced arthritis rat model: bony spur formation. Exp. Ther. Med. 14, 2563-2567.
<https://doi.org/10.3892/etm.2017.4817>
26. , H., Yamada, H., Shibata, T. N. et al. (2011) Dual role of interleukin-17 in pannus growth and osteoclastogenesis in rheumatoid arthritis. Arthritis Res. Ther. 13, 14.
<https://doi.org/10.1186/ar3238>
27. , O., Rulle, S., Bessis, N. et al. (2009) Dendritic cells modulated by innate immunity improve collagen-induced arthritis and induce regulatory T cells in vivo. Immunology 126, 35-44.
<https://doi.org/10.1111/j.1365-2567.2008.02875.x>
28. , E. A., Rieck, M., Pieper, J. (2014) Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 66, 1712-1722.
<https://doi.org/10.1002/art.38637>
29. Jelínek, P., Roušarová, J., Ryšánek, P. (2022) Application of oil-in-water cannabidiol emulsion for the treatment of rheumatoid arthritis. Cannabis Cannabinoid Res. (Epub ahead of print)
30. , S. L., Benson, R. A., Nickdel, M. B. et al. (2009) Plasmacytoid dendritic cells regulate breach of self-tolerance in autoimmune arthritis. J. Immunol. 182, 963-968.
<https://doi.org/10.4049/jimmunol.182.2.963>
31. , J. A., Kwak, J. S., Park, S. H. et al. (2021) ZIP8 exacerbates collagen-induced arthritis by increasing pathogenic T cell responses. Exp. Mol. Med. 53, 560-571.
<https://doi.org/10.1038/s12276-021-00591-1>
32. , H., Geboes, L., Mitera, T. et al. (2009) Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann. Rheum. Dis. 68, 744-750.
<https://doi.org/10.1136/ard.2007.086066>
33. , E. K., Kwon, J. E., Lee, S. Y. et al. (2017) IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis. 8, 2565.
<https://doi.org/10.1038/cddis.2016.490>
34. , H. Y., Hwang, S. Y. (2005) Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol. Cells 19, 180.
35. , N., Kuroda, T., Kobayashi, D. (2021) Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 22, 10922.
<https://doi.org/10.3390/ijms222010922>
36. , S., Udagawa, N., Takahashi, N. et al. (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345-1352.
<https://doi.org/10.1172/JCI5703>
37. , K., Yan, S., Kofler, D. M. (2022) Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front. Immunol. 13, 947636.
<https://doi.org/10.3389/fimmu.2022.947636>
38. , J., Lee, J., Park, M. K. et al. (2013) Interferon gamma suppresses collagen-induced arthritis by regulation of Th17 through the induction of indoleamine-2,3-deoxygenase. PLoS One 8, e60900.
<https://doi.org/10.1371/journal.pone.0060900>
39. , B. P., Conacher, M., Hunter, D. et al. (2002) A novel dendritic cell-induced model of erosive inflammatory arthritis: distinct roles for dendritic cells in T cell activation and induction of local inflammation. J. Immunol. 169, 7071-7077.
<https://doi.org/10.4049/jimmunol.169.12.7071>
40. , A., Chang, M. H., Schnell, J. et al. (2021) IL-1β-driven osteoclastogenic Tregs accelerate bone erosion in arthritis. J. Clin. Invest. 131, e141008.
<https://doi.org/10.1172/JCI141008>
41. , P., Schwarz, E. M. (2003) The TNF-α transgenic mouse model of inflammatory arthritis. Springer Semin. Immunopathol. 25, 19-33.
<https://doi.org/10.1007/s00281-003-0125-3>
42. , Y. J., Anzaghe, M., Schulke, S. (2020) Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 9, 880.
<https://doi.org/10.3390/cells9040880>
43. , J. A., Williams, N. A. (2001) The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology 103, 407-416.
<https://doi.org/10.1046/j.1365-2567.2001.01267.x>
44. , I. B., Schett, G. (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429-442.
<https://doi.org/10.1038/nri2094>
45. , P. A., Mathis, D., Benoist, C. (2008) The K/BxN arthritis model. Curr. Protoc. Immunol. 81, 15.22.1-15.22.12.
<https://doi.org/10.1002/0471142735.im1522s81>
46. , I., Jimi, E. (2006) Regulation of osteoclast differentiation and function by interleukin-1. Vitam. Horm. 74, 357-370.
<https://doi.org/10.1016/S0083-6729(06)74015-8>
47. , J. H., Lee, J. H., Choi, H. J. et al. (2022) TNF-α induces mitophagy in rheumatoid arthritis synovial fibroblasts, and mitophagy inhibition alleviates synovitis in collagen antibody-induced arthritis. Int. J. Mol. Sci. 23, 5650.
<https://doi.org/10.3390/ijms23105650>
48. , E., Gomes, A. C., Pereira, J. P. (2016) Inflammatory cell migration in rheumatoid arthritis: a comprehensive review. Clin. Rev. Allergy Immunol. 51, 59-78.
<https://doi.org/10.1007/s12016-015-8520-9>
49. , H., Murakami, M., Okuyama, Y. et al. (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628-636.
<https://doi.org/10.1016/j.immuni.2008.07.018>
50. , F., Franza, L., Carusi, V. (2020) Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci. 21, 5238.
<https://doi.org/10.3390/ijms21155238>
51. , F., Pourzitaki, C., Dardalas, I. (2020) The use of collagen-induced arthritis animal model on studying bone metabolism. Calcif. Tissue Int. 107, 109-120.
<https://doi.org/10.1007/s00223-020-00697-0>
52. , A. F., Bungau, S. G. (2021) Management of rheumatoid arthritis: an overview. Cells 10, 2857.
<https://doi.org/10.3390/cells10112857>
53. , M. I., Garcia, S., Helder, B. et al. (2020) cDC1 are required for the initiation of collagen-induced arthritis. J. Transl. Autoimmun. 3, 100066.
<https://doi.org/10.1016/j.jtauto.2020.100066>
54. , K., Falciani, F., Curnow, S. J. et al. (2005) Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, 784-795.
<https://doi.org/10.1186/ar1733>
55. , M. J., Nandakumar, K. S., Holmdahl, R. (2008) The role of collagen antibodies in mediating arthritis. Mod. Rheumatol. 18, 429-441.
<https://doi.org/10.3109/s10165-008-0080-x>
56. , P., Cipriani, P., Carubbi, F. et al. (2015) The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm. 2015, 782382.
<https://doi.org/10.1155/2015/782382>
57. , S., Lee, J. H., Kim, S. I. (2006) IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes. Clin. Rheumatol. 25, 16-20.
<https://doi.org/10.1007/s10067-005-1081-1>
58. , S., Cooney, L. A., White, P. et al. (2009) Regulation of pathogenic IL-17 responses in collagen-induced arthritis: roles of endogenous interferon-gamma and IL-4. Arthritis Res. Ther. 11, 158.
<https://doi.org/10.1186/ar2838>
59. , K., Suematsu, A., Okamoto, K. et al. (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673-2682.
<https://doi.org/10.1084/jem.20061775>
60. , E., Billiau, A., Matthys, P. (2011) Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-γ. J. Interferon Cytokine Res. 31, 917-926.
<https://doi.org/10.1089/jir.2011.0056>
61. , E., Touzot, M., Bohineust, A. et al. (2013) Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336-348.
<https://doi.org/10.1016/j.immuni.2012.10.018>
62. , X. L., Lin, W., Mao, C. W. (2017) Blockade of IL-17 alleviated inflammation in rat arthritis and MMP-13 expression. Eur. Rev. Med. Pharmacol. Sci. 21, 2329-2337.
63. , K., Hung, N. N., Erika, H. N. et al. (2020) CUX1 and IκBζ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 117, 5532-5541.
<https://doi.org/10.1073/pnas.1912702117>
64. , J. S., Aletaha, D., McInnes, I. B. (2016) Rheumatoid arthritis. Lancet 388, 2023-2038.
<https://doi.org/10.1016/S0140-6736(16)30173-8>
65. , H. P., Li, X., Yu, R. et al. (2015) Phenotypic characterization of type II collagen-induced arthritis in Wistar rats. Exp. Ther. Med. 10, 1483-1488.
<https://doi.org/10.3892/etm.2015.2667>
66. , H., Hevezi, P., Roth, R. B. et al. (2008) Gene array analysis comparison between rat collagen-induced arthritis and human rheumatoid arthritis. Scand. J. Immunol. 68, 43-57.
<https://doi.org/10.1111/j.1365-3083.2008.02117.x>
67. , S., Nagafuchi, Y., Tsuchida, Y. et al. (2018) Transcriptome analysis of peripheral blood from patients with rheumatoid arthritis: a systematic review. Inflamm. Regen. 38, 21.
<https://doi.org/10.1186/s41232-018-0078-5>
68. , E., Neer, Z., Balogh, P. et al. (2012) Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production. Biologics 6, 101-115.
69. Tanushree, R., Saikat, G. (2013) Animal models of rheumatoid arthritis correlation and usefulness with human rheumatoid arthritis. IAJPS 3.
70. , J. H., Silva, A. M., Almeida, M. I. et al. (2019) The systemic immune response to collagen-induced arthritis and the impact of bone injury in inflammatory conditions. Int. J. Mol. Sci. 20, 5436.
<https://doi.org/10.3390/ijms20215436>
71. , D. E., Townes, A. S., Kang, A. H. (1977) Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 146, 857-868.
<https://doi.org/10.1084/jem.146.3.857>
72. , Q., Xiong, X., Zhang, X. et al. (2016) Secondary osteoporosis in collagen-induced arthritis rats. J. Bone Miner. Metab. 34, 500-516.
<https://doi.org/10.1007/s00774-015-0700-4>
73. , Y., Fujio, K., Shoda, H. et al. (2007) IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis. J. Immunol. 179, 7128-7136.
<https://doi.org/10.4049/jimmunol.179.10.7128>
74. , L., Mingyue, H., Feng, Z. (2021) Systematic review of robust experimental models of rheumatoid arthritis for basic research. DCM 4, 262-272.
75. , H. (2019) Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. Front. Immunol. 10, 1395.
<https://doi.org/10.3389/fimmu.2019.01395>
76. , P., Han, D., Tang, T. et al. (2009) The destruction evaluation in different foot joints: new ideas in collagen-induced arthritis rat model. Rheumatol. Int. 29, 607-613.
<https://doi.org/10.1007/s00296-008-0731-4>
77. , S., Ecochard, R., Tournadre, A. et al. (2009) Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112-3120.
<https://doi.org/10.4049/jimmunol.0801967>
