Fol. Biol. 2023, 69, 59-68
https://doi.org/10.14712/fb2023069020059
Correlation of Short Leukocyte Telomeres and Oxidative Stress with the Presence and Severity of Lung Cancer Explored by Principal Component Analysis
References
1. , A. (2020) Telomeres and COVID-19. FASEB J. 34, 7247-7252.
<https://doi.org/10.1096/fj.202001025>
2. , D., Lau, E., Winkler, J. V. (2000) A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia: a preliminary report. J. Emerg. Med. 19, 311-315.
<https://doi.org/10.1016/S0736-4679(00)00255-9>
3. , W., Rozwadowska, N., Romaniuk, A. et al. (2016) Telomere length assessment in leukocytes presents potential diagnostic value in patients with breast cancer. Oncol. Lett. 11, 2305-2309.
<https://doi.org/10.3892/ol.2016.4188>
4. , B., Blasco, M. A. (2013) Telomerase at the intersection of cancer and aging. Trends Genet. 29, 513-520.
<https://doi.org/10.1016/j.tig.2013.06.007>
5. , E. H., Epel, E. S., Lin, J. (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193-1198.
<https://doi.org/10.1126/science.aab3389>
6. , J. R. (2013) Harnessing the immune system for the treatment of non-small-cell lung cancer. J. Clin. Oncol. 31, 1021-1028.
<https://doi.org/10.1200/JCO.2012.45.8703>
7. , B., Huang, R. Y., Burgess, R. et al. (2014) Tumor-induced perturbations of cytokines and immune cell networks. Biochim. Biophys. Acta 1845, 182-201.
8. , R. M. (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47.
<https://doi.org/10.1093/nar/30.10.e47>
9. , Y., Qu, F., He, X. et al. (2014) Short leukocyte telomere length predicts poor prognosis and indicates altered immune functions in colorectal cancer patients. Ann. Oncol. 25, 869-876.
<https://doi.org/10.1093/annonc/mdu016>
10. , M., Tsai, C. W., Shang, W. S. et al. (2020) Prognostic value of leukocyte telomere length in renal cell carcinoma patients. Am. J. Cancer Res. 10, 3428-3439.
11. , Y., Wu, Y., Huang, X. et al. (2015) Leukocyte telomere length: a novel biomarker to predict the prognosis of glioma patients. J. Cancer Res. Clin. Oncol. 141, 1739-1747.
<https://doi.org/10.1007/s00432-015-1938-x>
12. , P. M., Wu, C. C., Carter, B. W. et al. (2018) The epidemiology of lung cancer. Transl. Lung Cancer Res. 7, 220-233.
<https://doi.org/10.21037/tlcr.2018.05.06>
13. , J. P., Sanchez-Salcedo, P., Bastarrika, G. et al. (2017) Telomere length, COPD, and emphysema as risk factors for lung cancer. Eur. Respir. J. 49, 1-4.
<https://doi.org/10.1183/13993003.01521-2016>
14. , C. S., Tanoue, L. T., Matthay, R. A. (2011) Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32, 605-644.
<https://doi.org/10.1016/j.ccm.2011.09.001>
15. , F. S., Malarkey, W. B., Neri, E. et al. (2012) Stress-induced redistribution of immune cells – from barracks to boulevards to battlefields: a tale of three hormones – Curt Richter Award winner. Psychoneuroendocrinology. 37, 1345-1368.
<https://doi.org/10.1016/j.psyneuen.2012.05.008>
16. , R. B. (2011) Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp. Gerontol. 46, 135-140.
<https://doi.org/10.1016/j.exger.2010.08.027>
17. , K., Maunsell, E., Diorio, C. (2017) Telomere length and breast cancer prognosis: a systematic review. Cancer Epidemiol. Biomarkers Prev. 26, 3-10.
<https://doi.org/10.1158/1055-9965.EPI-16-0343>
18. , T., Papagno, L., Bayard, C. et al. (2019) New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J. Immunol. 202, 1962-1969.
<https://doi.org/10.4049/jimmunol.1801475>
19. , J., Colombet, M., Soerjomataram, I. et al. (2021) Cancer statistics for the year 2020: an overview. Int. J. Cancer 149, 778-789.
<https://doi.org/10.1002/ijc.33588>
20. , C., Abate, D., Abbasi, N. et al. (2019) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 5, 1749-1768.
21. , L., Gadalla, S. M., Murphy, J. D. et al. (2018) The effect of cancer treatments on telomere length: a systematic review of the literature. J. Natl. Cancer Inst. 110, 1048-1058.
<https://doi.org/10.1093/jnci/djy189>
22. Gómes, M., Teixeira, A. L., Coelho, A. et al. (2016) Inflammation and lung cancer: oxidative stress, ROS, and DNA damage. In: Reactive Oxygen Species in Biology and Human Health, ed. Ahmad, S. I, pp. 215-223, CRC Press, Boca Raton.
23. , H., Hagerling, C., Werb, Z. (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267-1284.
<https://doi.org/10.1101/gad.314617.118>
24. , C. M., Meeker, A. K. (2011) The potential utility of telomere-related markers for cancer diagnosis. J. Cell. Mol. Med. 15, 1227-1238.
<https://doi.org/10.1111/j.1582-4934.2011.01284.x>
25. , K. J., Allen, B. M., Spitzer, M. H. (2021) Systemic immunity in cancer. Nat. Rev. Cancer 21, 345-359.
<https://doi.org/10.1038/s41568-021-00347-z>
26. , E. L., Zhao, W., Fulp, W. J. et al. (2013) Lung tumor NF-κB signaling promotes T cell-mediated immune surveillance. J. Clin. Invest. 123, 2509-2522.
<https://doi.org/10.1172/JCI67250>
27. Hosmer, D. W. Jr., Lemeshow, S. (1989) Applied Logistic Regression. Wiley, New York.
28. , L., Saarela, O., Bojesen, S. E. et al. (2019) Mendelian randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. Int. J. Epidemiol. 48, 751-766.
<https://doi.org/10.1093/ije/dyy140>
29. , B., Yunesian, M., Nabizadeh, R. et al. (2017) Is leucocyte telomere length related with lung cancer risk?: a meta-analysis. Iran. Biomed. J. 21, 142-153.
30. , J., Bogavac-Stanojevic, N., Jelic-Ivanovic, Z. et al. (2015) Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis 241, 192-198.
<https://doi.org/10.1016/j.atherosclerosis.2015.05.016>
31. , R. J., Liu, B., Krysan, K. et al. (2020) Lung cancer and immunity markers. Cancer Epidemiol. Biomarkers Prev. 29, 2423-2430.
<https://doi.org/10.1158/1055-9965.EPI-20-0716>
32. , Y., Ye, J., Yamakawa, K. et al. (2023). Association of longer telomere length in cancer cells and cancer-associated fibroblasts with worse prognosis. J. Natl. Cancer Inst. 115, 208-218.
<https://doi.org/10.1093/jnci/djac226>
33. , N., Nakamura, H., Sato, R. (2006) Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Sci. 97, 1366-1373.
<https://doi.org/10.1111/j.1349-7006.2006.00342.x>
34. , J., Ngamcherdtrakul, W., Yantasee, W. (2017) Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 11, 240-253.
<https://doi.org/10.1016/j.redox.2016.12.011>
35. , C. Y., Huang, J. A., Chen, Y. et al. (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med. Oncol. 28, 682-688.
<https://doi.org/10.1007/s12032-010-9515-2>
36. , C. P., Codd, V. (2020) Genetic determinants of telomere length and cancer risk. Curr. Opin. Genet. Dev. 60, 63-68.
<https://doi.org/10.1016/j.gde.2020.02.007>
37. , A. G., Tsao, M. S., Beasley, M. B. et al. (2022) The 2021 WHO classification of lung tumors: impact of advances since 2015. J. Thorac. Oncol. 17, 362-387.
<https://doi.org/10.1016/j.jtho.2021.11.003>
38. , M., Hatabu, H., Johnson, B. E. et al. (2014) State of the art: response assessment in lung cancer in era of genomic medicine. Radiology 271, 6-27.
<https://doi.org/10.1148/radiol.14122524>
39. , J. Y., Luu, H. N., Park, H. Y. (2019) Telomere length in peripheral blood leukocytes and risk of renal cell carcinoma. Transl. Cancer Res. 8, 397-403.
<https://doi.org/10.21037/tcr.2019.06.36>
40. , D., Popat, S., Kerr, K. (2018) Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, 192-237.
<https://doi.org/10.1093/annonc/mdy275>
41. , Y., Ding, T., Wei, L. (2016) Shorter telomere length of T-cells in peripheral blood of patients with lung cancer. Onco Targets Ther. 9, 2675-2682.
42. , F., Li, R., He, R. et al. (2015) Short telomere length in peripheral blood leukocyte predicts poor prognosis and indicates an immunosuppressive phenotype in gastric cancer patients. Mol. Oncol. 9, 727-739.
<https://doi.org/10.1016/j.molonc.2014.11.008>
43. , H., Luu, H. N., Beckman, K. B. et al. (2021) Leukocyte telomere length, cancer incidence and all-cause mortality among Chinese adults: Singapore Chinese health study. Int. J. Cancer 148, 352-362.
<https://doi.org/10.1002/ijc.33211>
44. , M. D., Smith, C., Kaiser, M. et al. (2020) Physical activity, a modulator of aging through effects on telomere biology. Aging 12, 13803-13823.
<https://doi.org/10.18632/aging.103504>
45. , W. J., Cawthon, R. M., Purdue, M. P. et al. (2014) Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res. 74, 4090-4098.
<https://doi.org/10.1158/0008-5472.CAN-14-0459>
46. , A., Krasnienkov, D. (2021) Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet. 11, 1-20.
<https://doi.org/10.3389/fgene.2020.630186>
47. , A., Vlachogianni, T., Fiotakis, K. et al. (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 10, 3886-3907.
<https://doi.org/10.3390/ijerph10093886>
48. , R., Deeb, K., Diamante, M. et al. (2014) Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. Immunobiology 219, 487-496.
<https://doi.org/10.1016/j.imbio.2014.02.010>
49. , M. D., Kershaw, M. H., Schreiber, R. D. et al. (2011) Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235-271.
<https://doi.org/10.1146/annurev-immunol-031210-101324>
50. , M. S., Chang, J. H., Hung, W. Y. et al. (2018) The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 16, 37-61.
<https://doi.org/10.1186/s13046-018-0689-3>
51. , Y., Guo, X., Huang, Z. et al. (2020) Shortened telomere length in peripheral blood leukocytes of patients with lung cancer, chronic obstructive pulmonary disease in a high indoor air pollution region in China. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 503250, 858-860.
52. , L., Mailloux, A., Rollison, D. E. et al. (2013) Naive T-cells in myelodysplastic syndrome display intrinsic human telomerase reverse transcriptase (hTERT) deficiency. Leukemia 27, 897-906.
<https://doi.org/10.1038/leu.2012.300>
53. , J. M., Beckman, K. B., Wang, R. (2018) Leukocyte telomere length in relation to risk of lung adenocarcinoma incidence: findings from the Singapore Chinese health study. Int. J. Cancer 142, 2234-2243.
<https://doi.org/10.1002/ijc.31251>
54. , P., Huang, S., Bao, F. C. et al. (2019) Discriminating association of a common telomerase reverse transcriptase promoter polymorphism with telomere parameters in non-small cell lung cancer with or without epidermal growth factor receptor mutation. Eur. J. Cancer 120, 10-19.
<https://doi.org/10.1016/j.ejca.2019.06.024>
55. , C., Chen, X., Li, L. et al. (2015) The association between telomere length and cancer prognosis: evidence from a meta-analysis. PLoS One 10, e0133174.
<https://doi.org/10.1371/journal.pone.0133174>
56. , X., Wang, D., Li, Z. et al. (2020) Low-dose gemcitabine treatment enhances immunogenicity and natural killer cell-driven tumor immunity in lung cancer. Front. Immunol. 11, 1-14.
57. , X., Han, W., Xue, W. et al. (2016) The association between telomere length and cancer risk in population studies. Sci. Rep. 6, 1-10.
