Fol. Biol. 2023, 69, 99-106
https://doi.org/10.14712/fb2023069030099
De novo Transcriptome Analysis and Gene Expression Profiling of Corylus Species
References
1. Andrews, S., Krueger, F., Segonds-Pichon, A. et al. (2012) FastQC. Babraham Institute, Babraham, UK.
2. 2016) Turkish Filbert (Corylus colurna L.): a new distribution area in Northwestern Anatolia Forests (Provinces of Müsellimler, Tunuslar in Ağlı, Kastamonu/Turkey). Biol. Divers. Conserv. 9, 128-135. (in Turkish)
, S., Aydınözü, D., Yer, E. N. et al. (
3. 2018) Kastamonu yöresinde yetişen Türk fındığının (Corylus colurna L.) yağ ve protein içeriği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 19, 1-7. (in Turkish)
< , S., Ünalan, E., İslam, A. et al. (https://doi.org/10.17474/artvinofd.296580>
4. 2019) Comparative transcriptome analysis reveals higher expression of stress and defense responsive genes in dwarf soybeans obtained from the crossing of G. max and G. soja. Genes Genomics 41, 1315-1327.
< , Y.-W., Roy, N. S., Yang, H. et al. (https://doi.org/10.1007/s13258-019-00846-2>
5. 2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583-2585.
< , S., Thiel, T., Münch, T. et al. (https://doi.org/10.1093/bioinformatics/btx198>
6. 1994) The antioxidant activity of flavonoids isolated from Corylus colurna. Phythother. Res. 8, 92-94.
< , L., Georgiev, N. (https://doi.org/10.1002/ptr.2650080208>
7. 2006) DNA typing and genetic relations among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome 49, 598-611.
< , P., Akkak, A., Botta, R. (https://doi.org/10.1139/g06-017>
8. FAO (2020) Global Forest Resources Assessment 2020 Main Report. Available at: https://www.fao.org/3/ca9825en/ca9825en.pdf
9. 2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150-3152.
< , L., Niu, B., Zhu, Z. et al. (https://doi.org/10.1093/bioinformatics/bts565>
10. 2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512.
< , B. J., Papanicolaou, A., Yassour, M. et al. (https://doi.org/10.1038/nprot.2013.084>
11. 2015) Advanced applications of RNA sequencing and challenges. Bioinform. Biol. Insights 9 (Suppl. 1), BBI.S28991.
< , Y., Gao, S., Muegge, K. et al. (https://doi.org/10.4137/BBI.S28991>
12. 2020) Fındık ıslahında gelişmeler. Akademik Ziraat Dergisi. 8, 167-174. (in Turkish)
< , A. (https://doi.org/10.29278/azd.667662>
13. 2015) De novo transcriptome assembly of two different Prunus salicina cultivars. Genom. Data 6, 262-263.
< , Y., Lian, S., Cho, J. K. et al. (https://doi.org/10.1016/j.gdata.2015.10.015>
14. 2019) Comparison of different annotation tools for characterization of the complete chloroplast genome of Corylus avellana cv Tombul. BMC Genomics 20, 874.
< , K., Lucas, S. J. (https://doi.org/10.1186/s12864-019-6253-5>
15. 2019) Gene expression analysis of bud burst process in European hazelnut (Corylus avellana L.) using RNA-Seq. Physiol. Mol. Biol. Plants 25, 13-29.
< , M., Kurt Kızıldoğan, A., Balık, H. İ. (https://doi.org/10.1007/s12298-018-0588-2>
16. 2020) Molecular cloning and expression analysis of hybrid hazelnut (Corylus heterophylla × Corylus avellana) ChaSRK1/2 genes and their homologs from other cultivars and species. Gene 756, 144917.
< , Q., Zhao, T., Liang, L. et al. (https://doi.org/10.1016/j.gene.2020.144917>
17. 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402-408.
< , K. J., Schmittgen, T. D. (https://doi.org/10.1006/meth.2001.1262>
18. 2021) A chromosome‐scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. Plant J. 105, 1413-1430.
< , S. J., Kahraman, K., Avşar, B. et al. (https://doi.org/10.1111/tpj.15099>
19. 2020) De novo assembly and annotation of transcriptomes from two cultivars of Cannabis sativa with different cannabinoid profiles. Gene 762, 145026.
< , P., Huang, J., McCoy, M. et al. (https://doi.org/10.1016/j.gene.2020.145026>
20. 2018) How complete are “complete” genome assemblies? An avian perspective. Mol. Ecol. Resour. 18, 1188-1195.
< , V., Weissensteiner, M. H., Suh, A. (https://doi.org/10.1111/1755-0998.12933>
21. 2022) A simple guide to de novo transcriptome assembly and annotation. Brief. Bioinform. 23, 1-30.
< , V., Kraft, L., Mesny, F. et al. (https://doi.org/10.1093/bib/bbab563>
22. 2014) Antioxidant activity and phenolic composition of Corylus colurna. Nat. Prod. Commun. 9, 679-682.
, E., Tóth, G., Alberti, A. et al. (
23. 2012) Assembly and characterization of the European hazelnut “Jefferson” transcriptome. Crop Sci. 52, 2679-2686.
< , E. R., Fox, S. E., Bryant, D. W. et al. (https://doi.org/10.2135/cropsci2012.02.0065>
24. Rowley, E. R., VanBuren, R., Bryant, D. W. et al. (2018) A draft genome and high-density genetic map of European hazelnut (Corylus avellana L.). bioRxiv.
<https://doi.org/10.1101/469015>
25. 2014) A tribute to the hazelnut plant (Corylus spp.) – the multiple uses of nature’s magnificent gifts. Acta Hortic. 1052, 371-376.
< , G. T., Ozman-Sullivan, S. K., Akbasli, O. et al. (https://doi.org/10.17660/ActaHortic.2014.1052.51>
26. 2019) Genetic diversity and structure in the northern populations of European hazelnut (Corylus avellana L.). Genome 62, 537-548.
< , P., Heinonen, M., Bitz, L. et al. (https://doi.org/10.1139/gen-2018-0193>
27. 2018) Identification and characterization of SSR, SNP and InDel molecular markers from RNA-Seq data of guar (Cyamopsis tetragonoloba, L. Taub.) roots. BMC Genomics 19, 951.
< , O., Randhawa, G. S. (https://doi.org/10.1186/s12864-018-5205-9>
28. 2019) RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics 20, 995.
< , V., Bassard, J.-E., Ramírez-González, R. et al. (https://doi.org/10.1186/s12864-019-6183-2>
29. 2013) TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol. 14, R134.
< , M., Proost, S., Van Neste, C. et al. (https://doi.org/10.1186/gb-2013-14-12-r134>