Fol. Biol. 2023, 69, 116-126
https://doi.org/10.14712/fb2023069040116
Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis
References
1. 2014) Suicidal erythrocyte death in end-stage renal disease. J. Mol. Med. (Berl.) 92, 871-879.
< , M., Artunc, F., Alzoubi, K. et al. (https://doi.org/10.1007/s00109-014-1151-4>
2. 2014) Eryptosis in lead-exposed workers. Toxicol. Appl. Pharmacol. 281, 195-202.
< , I. C., Hernández, G., Quintanar-Escorza, M. A. et al. (https://doi.org/10.1016/j.taap.2014.10.003>
3. 2023) Molecular mechanisms and pathophysiological significance of eryptosis. Int. J. Mol. Sci. 24, 5079.
< , S. A., Alfhili, M. A., Fatima, S. (https://doi.org/10.3390/ijms24065079>
4. 2017) N-acetylcysteine improves the quality of red blood cells stored for transfusion. Arch. Biochem. Biophys. 621, 31-37.
< , F., Machin, A., Tourińo, C. et al. (https://doi.org/10.1016/j.abb.2017.02.012>
5. 2018) The evolving erythrocyte: red blood cells as modulators of innate immunity. J. Immunol. 201, 1343-1351.
< , H. L., Brodsky, I. E., Mangalmurti, N. S. (https://doi.org/10.4049/jimmunol.1800565>
6. 2014) A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun. Signal. 12, 6.
< , M. I., Ebner, M., Wallner, C. et al. (https://doi.org/10.1186/1478-811X-12-6>
7. 2015) Enhanced suicidal erythrocyte death in acute cardiac failure. Eur. J. Clin. Invest. 45, 1316-1324.
< , P., Bissinger, R., Haverkamp, W. et al. (https://doi.org/10.1111/eci.12555>
8. 2019) 7-keto-cholesterol and cholestan-3beta, 5alpha, 6beta-triol induce eryptosis through distinct pathways leading to NADPH oxidase and nitric oxide synthase activation. Cell. Physiol. Biochem. 53, 933-947.
, A., Frazzitta, A., Cilla, A. et al. (
9. 2005) Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J. Biol. Chem. 280, 39024-39032.
< , I., Huang, K. T., Basu, S. et al. (https://doi.org/10.1074/jbc.M509045200>
10. 2022) Erythrocyte oxidative stress and thrombosis. Expert Rev. Mol. Med. 24, e31.
< , A., Galora, S., Argento, F. R. et al. (https://doi.org/10.1017/erm.2022.25>
11. 2016a) Reduced erythrocyte survival in uremic patients under hemodialysis or peritoneal dialysis. Kidney Blood Press. Res. 41, 966-977.
< , R., Artunc, F., Qadri, S. M. et al. (https://doi.org/10.1159/000452600>
12. 2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 286, 826-854.
< , R., Bhuyan, A. A. M., Qadri, S. M. et al. (https://doi.org/10.1111/febs.14606>
13. 2016b) Stimulated suicidal erythrocyte death in arteritis. Cell. Physiol. Biochem. 39, 1068-1077.
< , R., Kempe-Teufel, D. S., Honisch, S. et al. (https://doi.org/10.1159/000447814>
14. 2011) Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol. Cell. Biochem. 357, 171-179.
< , J. V., Muńoz-Reyes, E. G., Guerrero-Romero, J. F. et al. (https://doi.org/10.1007/s11010-011-0887-1>
15. 2018) Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J. Clin. Invest. 128, 607-624.
< , C. F., Goods, B. A., Askenase, M. H. et al. (https://doi.org/10.1172/JCI95612>
16. 2020) Reactive oxygen species: drivers of physiological and pathological processes. J. Inflamm. Res. 13, 1057-1073.
< , J., Aran, J. M. (https://doi.org/10.2147/JIR.S275595>
17. 2008) Free radical metabolism in human erythrocytes. Clin. Chim. Acta 390, 1-11.
< , M. Y. B. (https://doi.org/10.1016/j.cca.2007.12.025>
18. 2013) Redox regulation of protein kinases. FEBS J. 280, 1944-1965.
< , A., Cotter, T. G. (https://doi.org/10.1111/febs.12224>
19. 2023) The reactive species interactome in red blood cells: oxidants, antioxidants, and molecular targets. Antioxidants (Basel) 12, 1736.
< , M. M. (https://doi.org/10.3390/antiox12091736>
20. 2012) Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13, 10697-10721.
< , D., Rocco-Machado, N., Meyer-Fernandes, J. R. (https://doi.org/10.3390/ijms130910697>
21. 2018) Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins (Basel) 10, 280.
< , G. F., Bonan, N. B., Steiner, T. M. et al. (https://doi.org/10.3390/toxins10070280>
22. 2018) On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Front. Physiol. 9, 332.
< , L., Suvorava, T., Sansone, R. et al. (https://doi.org/10.3389/fphys.2018.00332>
23. 2022) Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells 11, 503.
< , P., Duszenko, M., Stein, J. et al. (https://doi.org/10.3390/cells11030503>
24. 2018) Eryptosis in haemochromatosis: implications for rheology. Clin. Hemorheol. Microcirc. 69, 457-469.
< , J. N., Bester, J., Pretorius, E. (https://doi.org/10.3233/CH-170325>
25. 2013) Redox regulation of Janus kinase: the elephant in the room. JAKSTAT 2, e26141.
, R. J. (
26. 2007) Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid. Redox Signal. 9, 1535-1540.
< , C. A., Zhang, Y., Li, X. et al. (https://doi.org/10.1089/ars.2007.1692>
27. 2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front. Cell Dev. Biol. 8, 597.
< , M., Lang, F. (https://doi.org/10.3389/fcell.2020.00597>
28. 2019) Antioxidant defense mechanisms in erythrocytes and in the central nervous system. Antioxidants (Basel) 8, 46.
< , R., Navarro, G., Martínez-Pinilla, E. (https://doi.org/10.3390/antiox8020046>
29. 2022) Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxidants (Basel) 11, 943.
< , D., Gawryś, J., Szahidewicz-Krupska, E. et al. (https://doi.org/10.3390/antiox11050943>
30. 2023) Immunogenic cell death in cancer: concept and therapeutic implications. J. Transl. Med. 21, 162.
< , L., Kepp, O., Hett, E. et al. (https://doi.org/10.1186/s12967-023-04017-6>
31. 2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486-541.
< , L., Vitale, I., Aaronson, S. A. et al. (https://doi.org/10.1038/s41418-017-0012-4>
32. 2013) Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood 121, 2099-2107.
< , A., Pushkaran, S., Konstantinidis, D. G. et al. (https://doi.org/10.1182/blood-2012-07-441188>
33. 2018) Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol. 340, 209-344.
< , C., Marchi, S., Simoes, I. C. M. et al. (https://doi.org/10.1016/bs.ircmb.2018.05.006>
34. 2021) Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid. Med. Cell. Longev. 2021, 6639199.
< , K., Pieniazek, A., Gwozdzinski, L. (https://doi.org/10.1155/2021/6639199>
35. 2022) Erythrocyte mitogen-activated protein kinases mediate hemolytic events under osmotic and oxidative stress and in hemolytic diseases. Cell. Signal. 99, 110450.
< , K., Fang, F., Kelly, K. et al. (https://doi.org/10.1016/j.cellsig.2022.110450>
36. 2019) Participation of phospholipase-A(2) and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol. Appl. Pharmacol. 371, 12-19.
< , G., Villanueva-Ibarra, C. A., Maldonado-Vega, M. et al. (https://doi.org/10.1016/j.taap.2019.03.025>
37. 2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br. J. Pharmacol. 160, 1408-1416.
< , P., Canton, M., Aker, S. et al. (https://doi.org/10.1111/j.1476-5381.2010.00793.x>
38. 2020) The role of necroptosis in ROS-mediated cancer therapies and its promising applications. Cancers (Basel) 12, 2185.
< , S. K., Chang, W. T., Lin, I. L. et al. (https://doi.org/10.3390/cancers12082185>
39. 2018) Pro-inflammatory actions of red blood cell-derived DAMPs. Exp. Suppl. 108, 211-233.
, V. (
40. 2016) Eryptosis as an underlying mechanism in systemic lupus erythematosus-related anemia. Cell. Physiol. Biochem. 40, 1391-1400.
< , P., Bian, M., Ma, W. et al. (https://doi.org/10.1159/000453191>
41. 2018) Cellular markers of eryptosis are altered in type 2 diabetes. Clin. Chem. Lab. Med. 56, e177-e180.
< , D. S., Bissinger, R., Qadri, S. M. et al. (https://doi.org/10.1515/cclm-2017-1058>
42. 2021) DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci. Transl. Med. 13, eabj1008.
< , L. K. M., Murphy, S., Kokkinaki, D. et al. (https://doi.org/10.1126/scitranslmed.abj1008>
43. 2020) How energy flow shapes cell evolution. Curr. Biol. 30, R471-R476.
< , N. (https://doi.org/10.1016/j.cub.2020.03.055>
44. 2015) Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 20, 758-767.
< , E., Bissinger, R., Gulbins, E. et al. (https://doi.org/10.1007/s10495-015-1094-4>
45. 2015a) Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin. Cell Dev. Biol. 39, 35-42.
< , E., Lang, F. (https://doi.org/10.1016/j.semcdb.2015.01.009>
46. 2015b) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. Biomed. Res. Int. 2015, 513518.
< , E., Lang, F. (https://doi.org/10.1155/2015/513518>
47. 2012) Killing me softly - suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 44, 1236-1243.
< , E., Qadri, S. M., Lang, F. (https://doi.org/10.1016/j.biocel.2012.04.019>
48. 2002) Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell. Physiol. Biochem. 12, 365-372.
< , K. S., Roll, B., Myssina, S. et al. (https://doi.org/10.1159/000067907>
49. 2016) Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J. Biol. Chem. 291, 13753-13761.
< , T. J., Sosunov, S. A., Shakerley, N. L. et al. (https://doi.org/10.1074/jbc.M116.716027>
50. 2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio 5, e012510-1e012514.
< , T. J., Stivison, E. A., Hod, E. A. et al. (https://doi.org/10.1128/mBio.01251-14>
51. 2015) CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis. Cell Death Dis. 6, e1773.
< , T. J., Stivison, E. A., Mal-Sarkar, T. et al. (https://doi.org/10.1038/cddis.2015.135>
52. 2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691-3707.
< , C., Cochemé, H. M. (https://doi.org/10.1016/j.molcel.2021.08.018>
53. 2012) Vitamin C in mouse and human red blood cells: an HPLC assay. Anal. Biochem. 426, 109-117.
< , H., Tu, H., Wang, Y. et al. (https://doi.org/10.1016/j.ab.2012.04.014>
54. 2013) Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb. Exp. Pharmacol. 216, 171-197.
< , P. L., Zhang, Y. (https://doi.org/10.1007/978-3-7091-1511-4_9>
55. 2013) Nitric oxide scavenging by red cell microparticles. Free Radic. Biol. Med. 65, 1164-1173.
< , C., Zhao, W., Christ, G. J. et al. (https://doi.org/10.1016/j.freeradbiomed.2013.09.002>
56. 2022) Ferroptosis-related long noncoding RNA signature predicts prognosis of clear cell renal carcinoma. Folia Biol. (Praha) 68, 1-15.
< , J. W., Supandi, F., Dhillon, S. K. (https://doi.org/10.14712/fb2022068010001>
57. 2015) Enhanced suicidal erythrocyte death contributing to anemia in the elderly. Cell. Physiol. Biochem. 36, 773-783.
< , A., Bissinger, R., Goebel, T. et al. (https://doi.org/10.1159/000430137>
58. 2016) Anatomy of the red cell membrane skeleton: unanswered questions. Blood 127, 187-199.
< , S. E. (https://doi.org/10.1182/blood-2014-12-512772>
59. 2021) Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic. Biol. Med. 168, 95-109.
< , A., Cortese-Krott, M. M., Kelm, M. et al. (https://doi.org/10.1016/j.freeradbiomed.2021.03.020>
60. 2020) An update on mitochondrial reactive oxygen species production. Antioxidants (Basel) 9, 472.
< , R. J. (https://doi.org/10.3390/antiox9060472>
61. 2005) Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 19, 416-418.
< , P., Straface, E., Pietraforte, D. et al. (https://doi.org/10.1096/fj.04-2450fje>
62. 2015) Biomarkers of oxidative stress in erythrocytes as a function of human age. World J. Methodol. 5, 216-222.
< , P. K., Kumar, P., Chandra, P. (https://doi.org/10.5662/wjm.v5.i4.216>
63. 2019) Storage primes erythrocytes for necroptosis and clearance. Cell. Physiol. Biochem. 53, 496-507.
, W. D., Hodges, A. L., Deragon, M. A. et al. (
64. 2022) Increased suicidal erythrocyte death in patients with hepatitis B-related acute-on-chronic liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 323, G9-G20.
< , C., Peng, F., Yin, W. et al. (https://doi.org/10.1152/ajpgi.00050.2020>
65. 2016) Red cell DAMPs and inflammation. Inflamm. Res. 65, 665-678.
< , R., Silveira, A. A., Conran, N. (https://doi.org/10.1007/s00011-016-0955-9>
66. 2019) Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8, 793.
< , L., Cipak Gasparovic, A., Cindric, M. et al. (https://doi.org/10.3390/cells8080793>
67. 2021) Red blood cells join the ranks as immune sentinels. Nat. Rev. Immunol. 21, 760-761.
< , K. (https://doi.org/10.1038/s41577-021-00648-2>
68. 2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 5, 84.
< , J., Nagababu, E., Rifkind, J. (https://doi.org/10.3389/fphys.2014.00084>
69. 2023) Oxidants and antioxidants in the redox biochemistry of human red blood cells. ACS Omega 8, 147-168.
< , M. N., Orrico, F., Villar, S. F. et al. (https://doi.org/10.1021/acsomega.2c06768>
70. 2020) Eryptosis and circulating blood cells microparticules in sickle cell diseases. Eur. J. Public Health 30, V958.
< , I., Khalfaoui, K., Safra, I. et al. (https://doi.org/10.1093/eurpub/ckaa166.1147>
71. 2021) Release mechanisms of major DAMPs. Apoptosis 26, 152-162.
< , A., Aziz, M., Wang, H. et al. (https://doi.org/10.1007/s10495-021-01663-3>
72. 2020) Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front. Immunol. 11, 551441.
< , E., Romana, M., Guillot, N. et al. (https://doi.org/10.3389/fimmu.2020.551441>
73. 2022) Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochem. J. 479, 677-685.
< , H., Murai, S., Moriwaki, K. (https://doi.org/10.1042/BCJ20210604>
74. 2008) Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Arch. 456, 293-305.
< , J. P., Liebig, G., Niemoeller, O. M. et al. (https://doi.org/10.1007/s00424-007-0393-1>
75. 2021) Lipid oxidation that is, and is not, inhibited by vitamin E: consideration about physiological functions of vitamin E. Free Radic Biol. Med. 176, 1-15.
< , E. (https://doi.org/10.1016/j.freeradbiomed.2021.09.001>
76. 2023) Oxidative stress in healthy and pathological red blood cells. Biomolecules 13, 1262.
< , F., Laurance, S., Lopez, A. C. et al. (https://doi.org/10.3390/biom13081262>
77. 2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell. Longev. 3, 2-12.
< , K. B., Rizvi, S. I. (https://doi.org/10.4161/oxim.3.1.10476>
78. 2023) Molecular mechanisms of oxidative stress-related neonatal jaundice. J. Biochem. Mol. Toxicol. 37, e23349.
< , S., Lembo, C., Giordano, M. et al. (https://doi.org/10.1002/jbt.23349>
79. 2018) Eryptosis and oxidative damage in hypertensive and dyslipidemic patients. Mol. Cell. Biochem. 440, 105-113.
< , C. E., Calderón-Salinas, J. V., Rosas-Flores, M. M. et al. (https://doi.org/10.1007/s11010-017-3159-x>
80. 2020) Role of nitric oxide carried by hemoglobin in cardiovascular physiology: developments on a three-gas respiratory cycle. Circ. Res. 126, 129-158.
< , R. T., Reynolds, J. D., Zhang, R. et al. (https://doi.org/10.1161/CIRCRESAHA.119.315626>
81. 2016) A comprehensive review on eryptosis. Cell. Physiol. Biochem. 39, 1977-2000.
< , E., du Plooy, J. N., Bester, J. (https://doi.org/10.1159/000447895>
82. 2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 31, 349-361.
< , S. M., Bissinger, R., Solh, Z. et al. (https://doi.org/10.1016/j.blre.2017.06.001>
83. 2018) Eryptosis: an erythrocyte’s suicidal type of cell death. Biomed Res. Int. 2018, 9405617.
< , L., Joubert, A. M. (https://doi.org/10.1155/2018/9405617>
84. 2018) The good, the bad, and the ugly of ROS: new insights on aging and aging-related diseases from eukaryotic and prokaryotic model organisms. Oxid. Med. Cell. Longev. 2018, 1941285.
, A. L., Sinha, S., Lindner, A. B. (
85. 2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl. Acad. Sci. U. S. A. 110, 1791-1796.
< , B. E., de Vos, J. M., Antonelli, A. et al. (https://doi.org/10.1073/pnas.1209927110>
86. 2022) Eryptosis as a new insight in malaria pathogenesis. Front. Immunol. 13, 855795.
< , A. M., Totino, P. R. R., Morrot, A. (https://doi.org/10.3389/fimmu.2022.855795>
87. 2023) O-GlcNAcylation of RIPK1 rescues red blood cells from necroptosis. Front. Immunol. 14, 1160490.
< , J., Kim, Y., Ji, S. et al. (https://doi.org/10.3389/fimmu.2023.1160490>
88. 2023) Different types of cell death and their shift in shaping disease. Cell Death Discov. 9, 284.
< , S., Shao, Y., Li, C. (https://doi.org/10.1038/s41420-023-01581-0>
89. 2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 9, 628157.
< , H. J., Traa, A., Van Raamsdonk, J. M. (https://doi.org/10.3389/fcell.2021.628157>
90. 2015) Mechanisms for redox-regulation of protein kinase C. Front. Pharmacol. 6, 128.
< , S. F. (https://doi.org/10.3389/fphar.2015.00128>
91. 2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol. 8, 909.
< , Z., Sarang, Z., Kiss, B. et al. (https://doi.org/10.3389/fimmu.2017.00909>
92. 2009) Oxygen in the evolution of complex life and the price we pay. Am. J. Respir. Cell Mol. Biol. 40, 507-510.
< , V. J. (https://doi.org/10.1165/rcmb.2008-0360PS>
93. Tkachenko, A. (2023) Apoptosis and eryptosis: similarities and differences. Apoptosis Online ahead of print.
<https://doi.org/10.1007/s10495-023-01915-4>
94. 2023) Casein kinase 1α mediates eryptosis: a review. Apoptosis 28, 1-19.
< , A., Onishchenko, A. (https://doi.org/10.1007/s10495-022-01776-3>
95. 2023) Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 17, 1-31.
< , A., Onishchenko, A., Myasoedov, V. et al. (https://doi.org/10.1080/17435390.2023.2203239>
96. 2013) Redox regulation of protein kinases. Crit. Rev. Biochem. Mol. Biol. 48, 332-356.
< , T. H., Carroll, K. S. (https://doi.org/10.3109/10409238.2013.790873>
97. 2020) Oxidation of erythrocytes enhance the production of reactive species in the presence of artemisinins. Int. J. Mol. Sci. 21, 4799.
< , I., Pério, P., Pantaleo, A. et al. (https://doi.org/10.3390/ijms21134799>
98. 2022) Methodologies and tools to shed light on erythrophagocytosis. Biochimie 202, 166-179.
< , C., Meilhac, O., Bourdon, E. et al. (https://doi.org/10.1016/j.biochi.2022.07.017>
99. 2023) The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI J. 22, 520-555.
Acar, N., Özgül, R. K. (
100. 2021) Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell. Longev. 2021, 9912436.
< , G. E., Gibson, S. B. (https://doi.org/10.1155/2021/9912436>
101. 2008) Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ. Res. 103, 957-964.
< , A. J., Milsom, A. B., Rathod, K. S. et al. (https://doi.org/10.1161/CIRCRESAHA.108.175810>
102. 2023) The double-edged functions of necroptosis. Cell Death Dis. 14, 163.
< , K., Chen, Z., Xu, Y. (https://doi.org/10.1038/s41419-023-05691-6>
103. 2020) Both caspase and calpain are involved in endoplasmic reticulum-targeted BNIP3-induced cell death. Folia Biol. (Praha) 66, 60-66.
< , J., Huang, Y. Y., Xu, X. M. et al. (https://doi.org/10.14712/fb2020066020060>
104. 2019) Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic. Biol. Med. 140, 279-294.
< , V., Mentel, M., Tielens, A. G. M. et al. (https://doi.org/10.1016/j.freeradbiomed.2019.03.030>