Fol. Biol. 2023, 69, 127-132

https://doi.org/10.14712/fb2023069040127

A Pilot Study on the Uptake of Propidium Iodide and YO-PRO-1 Iodide through the Pannexin Channels in Wallachian Frozen-Thawed Ram Spermatozoa

Filipp Georgijevič Savvulidi1, Martin Ptáček1, Anežka Málková1, Elena Golovina2, Jan Pytlík1, Martina Janošíková1, Szabolcs Nagy3, Joăo Pedro Barbas4, Luděk Stádník1, Karina Savvulidi Vargová2

1Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
2Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
3Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Hungary
4Instituto Nacional de Investigaçăo Agrária e Veterinária, Quinta da Fonte Boa, Vale de Santarém, Portugal

Received October 2023
Accepted December 2023

References

1. Anel-López, L., Garcia-Álvarez, O., Maroto-Morales, A. et al. (2017) Optimization of protocols for Iberian red deer (Cervus elaphus hispanicus) sperm handling before sex sorting by flow cytometry. Theriogenology 92, 129-136. <https://doi.org/10.1016/j.theriogenology.2017.01.023>
2. Buchelly Imbachí, F., Zalazar, L., Pastore, J. I. et al. (2022) Clustering and classification software for sperm subpopulation analysis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10, 585-598.
3. David, I., Kohnke, P., Lagriffoul, G. et al. (2015) Mass sperm motility is associated with fertility in sheep. Anim. Reprod. Sci. 161, 75-81. <https://doi.org/10.1016/j.anireprosci.2015.08.006>
4. D’hondt, C., Ponsaerts, R., de Smedt, H. et al. (2009) Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 31, 953-974. <https://doi.org/10.1002/bies.200800236>
5. Gallardo Bolańos, J. M., Da Silva, C. M. B., Muńoz, P. M. et al. (2014) Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction 148, 221-235. <https://doi.org/10.1530/REP-13-0191>
6. García, B. M., Moran, A. M., Fernández, L. G. et al. (2012) The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic-induced stress: role of c-Jun N-terminal kinase (JNK) pathway. J. Androl. 33, 105-113. <https://doi.org/10.2164/jandrol.110.011957>
7. Garner, D. L., Pinkel, D., Johnson, L. A. et al. (1986) Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol. Reprod. 34, 127-138. <https://doi.org/10.1095/biolreprod34.1.127>
8. Graham, J. K., Kunze, E., Hammerstedt, R. H. (1990) Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biol. Reprod. 43, 55-64. <https://doi.org/10.1095/biolreprod43.1.55>
9. Hossain, M. S., Johannisson, A., Wallgren, M. et al. (2011) Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian J. Androl. 13, 406-419. <https://doi.org/10.1038/aja.2011.15>
10. Hossen, S., Sharker, M. R., Cho, Y. et al. (2021) Effects of antifreeze protein III on sperm cryopreservation of pacific abalone, Haliotis discus hannai. Int. J. Mol. Sci. 22, 3917. <https://doi.org/10.3390/ijms22083917>
11. Lv, C., Wu, G., Hong, Q. et al. (2019) Spermatozoa cryopreservation: state of art and future in small ruminants. Biopreserv. Biobank. 17, 171-182. <https://doi.org/10.1089/bio.2018.0113>
12. Mańkowska, A., Gilun, P., Zasiadczyk, Ł. et al. (2022) Expression of TXNRD1, HSPA4L and ATP1B1 genes associated with the freezability of boar sperm. Int. J. Mol. Sci. 23, 9320. <https://doi.org/10.3390/ijms23169320>
13. Martin, G., Sabido, O., Durand, P. et al. (2004) Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol. Reprod. 71, 28-37. <https://doi.org/10.1095/biolreprod.103.024281>
14. Martínez-Pastor, F., Mata-Campuzano, M., Alvarez-Rodríguez, M. et al. (2010) Probes and techniques for sperm evaluation by flow cytometry. Reprod. Domest. Anim. 45(Suppl. 2), 67-78. <https://doi.org/10.1111/j.1439-0531.2010.01622.x>
15. Nadeali, Z., Mohammad-Rezaei, F., Aria, H. et al. (2022) Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19. Life Sci. 297, 120482. <https://doi.org/10.1016/j.lfs.2022.120482>
16. Ortega-Ferrusola, C., Sotillo-Galán, Y., Varela-Fernández, E. et al. (2008) Detection of “apoptosis-like” changes during the cryopreservation process in equine sperm. J. Androl. 29, 213-221. <https://doi.org/10.2164/jandrol.107.003640>
17. Petričáková, K., Janošíková, M., Ptáček, M. et al. (2022) Comparison of commercial poultry semen extenders modified for cryopreservation procedure in the genetic resource program of Czech golden spotted hen. Animals (Basel) 12, <https://doi.org/10.3390/ani12202886>
18. Ptáček, M., Stádníková, M., Savvulidi, F. et al. (2019) Ram semen cryopreservation using egg yolk or egg yolk-free extenders: preliminary results. Sci. Agric. Bohem. 50, 96-103.
19. Pytlík, J., Savvulidi, F. G., Ducháček, J. et al. (2022) Effect of extender on the quality and incubation resilience of cryopreserved Holstein bull semen. Czech J. Anim. Sci. 67, 75-86. <https://doi.org/10.17221/196/2021-CJAS>
20. Savvulidi, F. G., Ptacek, M., Malkova, A. et al. (2021) Optimizing the conventional method of sperm freezing in liquid nitrogen vapour for Wallachian sheep conservation program. Czech J. Anim. Sci. 66, 55-64. <https://doi.org/10.17221/226/2020-CJAS>
21. Torres, J. L., Palomino, J., Moreno, R. D. et al. (2017) Pannexin channels increase propidium iodide permeability in frozen-thawed dog spermatozoa. Reprod. Fertil. Dev. 29, 2269-2276. <https://doi.org/10.1071/RD16267>
22. Trzcińska, M., Bryła, M., Smorąg, Z. (2008) Effect of liquid storage on membrane integrity and mitochondrial activity: a new diagnostic method of evaluating boar sperm quality. J. Anim. Feed Sci. 17, 372-380. <https://doi.org/10.22358/jafs/66625/2008>
23. Vašíček, J., Svoradová, A., Baláži, A. et al. (2021) Ram semen quality can be assessed by flow cytometry several hours after post-fixation. Zygote 29, 130-137. <https://doi.org/10.1017/S0967199420000581>
24. Vozaf, J., Makarevich, A. V., Balazi, A. et al. (2021) Cryopreservation of ram semen: manual versus programmable freezing and different lengths of equilibration. Anim. Sci. J. 92, e13670. <https://doi.org/10.1111/asj.13670>
25. Vozaf, J., Svoradová, A., Baláži, A. et al. (2022) The cryopreserved sperm traits of various ram breeds: towards biodiversity conservation. Animals (Basel) 12 <https://doi.org/10.3390/ani12101311>
26. Warr, S., Pini, T., de Graaf, S. P. et al. (2023) Molecular insights to the sperm-cervix interaction and the consequences for cryopreserved sperm. Biol. Reprod. 108, 183-196. <https://doi.org/10.1093/biolre/ioac188>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive