Fol. Biol. 2023, 69, 133-148

https://doi.org/10.14712/fb2023069040133

Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma

Samuel Herceg, Radoslav Janoštiak

BIOCEV – First Faculty of Medicine, Charles University, Prague, Czech Republic

Received November 2023
Accepted December 2023

References

1. Aladhraei, M., Kassem Al-Thobhani, A., Poungvarin, N. et al. (2019) Association of XPO1 overexpression with NF-κB and Ki67 in colorectal cancer. Asian Pac. J. Cancer Prev. 20, 3747-3754. <https://doi.org/10.31557/APJCP.2019.20.12.3747>
2. Alnabulsi, A., Agouni, A., Mitra, S. et al. (2012) Cellular apoptosis susceptibility (chromosome segregation 1-like, CSE1L) gene is a key regulator of apoptosis, migration and invasion in colorectal cancer. J. Pathol. 228, 471-481. <https://doi.org/10.1002/path.4031>
3. Alshareeda, A. T., Negm, O. H., Green, A. R. et al. (2015) KPNA2 is a nuclear export protein that contributes to aberrant localisation of key proteins and poor prognosis of breast cancer. Br. J. Cancer 112, 1929-1937. <https://doi.org/10.1038/bjc.2015.165>
4. Argentaro, A., Sim, H., Kelly, S. et al. (2003) A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J. Biol. Chem. 278, 33839-33847. <https://doi.org/10.1074/jbc.M302078200>
5. Bartha, Á., Győrffy, B. (2021) TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 22, 2622. <https://doi.org/10.3390/ijms22052622>
6. Çağatay, T., Chook, Y. M. (2018) Karyopherins in cancer. Curr. Opin. Cell Biol. 52, 30-42. <https://doi.org/10.1016/j.ceb.2018.01.006>
7. Cerami, E., Gao, J., Dogrusoz, U. et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404. <https://doi.org/10.1158/2159-8290.CD-12-0095>
8. Chen, J., Hu, Y., Teng, Y. et al. (2021) Increased nuclear transporter Importin 7 contributes to the tumor growth and correlates with CD8 T cell infiltration in cervical cancer. Front. Cell. Dev. Biol. 9, 732786. <https://doi.org/10.3389/fcell.2021.732786>
9. Chen, L., Huang, Y., Zhou, L. et al. (2019) Prognostic roles of the transcriptional expression of exportins in hepatocellular carcinoma. Biosci. Rep. 39, BSR20190827. <https://doi.org/10.1042/BSR20190827>
10. Chook, Y. M., Süel, K. E. (2011) Nuclear import by karyo­pherin-βs: recognition and inhibition. Biochim. Biophys. Acta 1813, 1593-1606. <https://doi.org/10.1016/j.bbamcr.2010.10.014>
11. Christie, M., Chang, C.-W., Róna, G. et al. (2016) Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428(10 Pt A), 2060-2090. <https://doi.org/10.1016/j.jmb.2015.10.023>
12. Cimica, V., Chen, H.-C., Iyer, J. K. et al. (2011) Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1. PloS One 6, e20188. <https://doi.org/10.1371/journal.pone.0020188>
13. Conti, E., Uy, M., Leighton, L. et al. (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193-204. <https://doi.org/10.1016/S0092-8674(00)81419-1>
14. Dahl, E., Kristiansen, G., Gottlob, K. et al. (2006) Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin α2 as a potential novel prognostic marker in breast cancer. Clin. Cancer Res. 12, 3950-3960. <https://doi.org/10.1158/1078-0432.CCR-05-2090>
15. de Almeida, M., Hinterndorfer, M., Brunner, H. et al. (2021) AKIRIN2 controls the nuclear import of proteasomes in vertebrates. Nature 599, 491-496. <https://doi.org/10.1038/s41586-021-04035-8>
16. De Corte, V., Van Impe, K., Bruyneel, E. et al. (2004) Increased importin-β-dependent nuclear import of the actin modulating protein CapG promotes cell invasion. J. Cell Sci. 117(Pt 22), 5283-5292. <https://doi.org/10.1242/jcs.01410>
17. De Magistris, P., Antonin, W. (2018) The dynamic nature of the nuclear envelope. Curr. Biol. 28, R487-R497. <https://doi.org/10.1016/j.cub.2018.01.073>
18. Dean, K. A., von Ahsen, O., Görlich, D. et al. (2001) Signal recognition particle protein 19 is imported into the nucleus by importin 8 (RanBP8) and transportin. J. Cell Sci. 114, 3479-3485. <https://doi.org/10.1242/jcs.114.19.3479>
19. Ding, X.-X., Zhu, Q.-G., Zhang, S.-M. et al. (2017) Precision medicine for hepatocellular carcinoma: driver mutations and targeted therapy. Oncotarget 8, 55715-55730. <https://doi.org/10.18632/oncotarget.18382>
20. Dingwall, C., Laskey, R. (1992) The nuclear membrane. Science 258, 942-947. <https://doi.org/10.1126/science.1439805>
21. Drucker, E., Holzer, K., Pusch, S. et al. (2019) Karyopherin α2-dependent import of E2F1 and TFDP1 maintains protumorigenic stathmin expression in liver cancer. Cell Commun. Signal. 17, 159. <https://doi.org/10.1186/s12964-019-0456-x>
22. Forwood, J. K., Lam, M. H., Jans, D. A. (2001) Nuclear import of Creb and AP-1 transcription factors requires importin-β1 and Ran but is independent of importin-α. Biochemistry 40, 5208-5217. <https://doi.org/10.1021/bi002732+>
23. Freedman, N. D., Yamamoto, K. R. (2004) Importin 7 and importin α/importin β are nuclear import receptors for the glucocorticoid receptor. Mol. Biol. Cell 15, 2276-2286. <https://doi.org/10.1091/mbc.e03-11-0839>
24. Frey, S., Richter, R. P., Görlich, D. (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815-817. <https://doi.org/10.1126/science.1132516>
25. Gao, J., Aksoy, B. A., Dogrusoz, U. et al. (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1. <https://doi.org/10.1126/scisignal.2004088>
26. García-García, M., Sánchez-Perales, S., Jarabo, P. et al. (2022) Mechanical control of nuclear import by Importin 7 is regulated by its dominant cargo YAP. Nat. Commun. 13, 1174. <https://doi.org/10.1038/s41467-022-28693-y>
27. Giri, D. K., Ali-Seyed, M., Li, L.-Y. et al. (2005) Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol. Cell. Biol. 25, 11005-11018. <https://doi.org/10.1128/MCB.25.24.11005-11018.2005>
28. Gomes, D. A., Rodrigues, M. A., Leite, M. F. et al. (2008) c-Met must translocate to the nucleus to initiate calcium signals. J. Biol. Chem. 283, 4344-4351. <https://doi.org/10.1074/jbc.M706550200>
29. Görlich, D., Mattaj, I. W. (1996) Nucleocytoplasmic transport. Science 271, 1513-1518. <https://doi.org/10.1126/science.271.5255.1513>
30. Guo, X., Wang, Z., Zhang, J. et al. (2019) Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types. Acta Biochim. Biophys. Sin. (Shanghai) 51, 285-292. <https://doi.org/10.1093/abbs/gmz003>
31. He, H.-J., Wang, Q., Zheng, W.-W. et al. (2010) Function of nuclear transport factor 2 and Ran in the 20E signal transduction pathway in the cotton bollworm, Helicoverpa armigera. BMC Cell Biol. 11, 1. <https://doi.org/10.1186/1471-2121-11-1>
32. Hua, S., Ji, Z., Quan, Y. et al. (2020) Identification of hub genes in hepatocellular carcinoma using integrated bioinformatic analysis. Aging (Albany NY) 12, 5439-5468. <https://doi.org/10.18632/aging.102969>
33. Imamoto, N., Shimamoto, T., Takao, T. et al. (1995) In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J. 14, 3617-3626. <https://doi.org/10.1002/j.1460-2075.1995.tb00031.x>
34. Jäkel, S. (1998) Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17, 4491-4502. <https://doi.org/10.1093/emboj/17.15.4491>
35. Jäkel, S., Albig, W., Kutay, U. et al. (1999) The importin β/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J., 18, 2411-2423. <https://doi.org/10.1093/emboj/18.9.2411>
36. Jensen, J. B., Munksgaard, P. P., Sřrensen, C. M. et al. (2011) High expression of karyopherin-α2 defines poor prognosis in non-muscle-invasive bladder cancer and in patients with invasive bladder cancer undergoing radical cystectomy. Eur. Urol. 59, 841-848. <https://doi.org/10.1016/j.eururo.2011.01.048>
37. Jiang, M.-C. (2016) CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumor Biol. 37, 13077-13090. <https://doi.org/10.1007/s13277-016-5301-x>
38. Junod, S. L., Tingey, M., Kelich, J. M. et al. (2023) Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 26, 107445. <https://doi.org/10.1016/j.isci.2023.107445>
39. Kau, T. R., Way, J. C., Silver, P. A. (2004) Nuclear transport and cancer: from mechanism to intervention. Nat. Rev. Cancer 4, 106-117. <https://doi.org/10.1038/nrc1274>
40. Kelenis, D. P., Rodarte, K. E., Kollipara, R. K. et al. (2022) Inhibition of karyopherin β1-mediated nuclear import disrupts oncogenic lineage-defining transcription factor activity in small cell lung cancer. Cancer Res. 82, 3058-3073. <https://doi.org/10.1158/0008-5472.CAN-21-3713>
41. Kim, Y. H., Han, M.-E., Oh, S.-O. (2017) The molecular me­chanism for nuclear transport and its application. Ant. Cell Biol. 50, 77-85. <https://doi.org/10.5115/acb.2017.50.2.77>
42. Kimura, M., Imamoto, N. (2014) Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 15, 727-748. <https://doi.org/10.1111/tra.12174>
43. Kirby, T. W., Gassman, N. R., Smith, C. E. et al. (2015) Nuclear localization of the DNA repair scaffold XRCC1: uncovering the functional role of a bipartite NLS. Sci. Rep. 5, 13405. <https://doi.org/10.1038/srep13405>
44. Kojima, Y., Nakayama, M., Nishina, T. et al. (2011) Importin β1 protein-mediated nuclear localization of death receptor 5 (DR5) limits DR5/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell death of human tumor cells. J. Biol. Chem. 286, 43383-43393. <https://doi.org/10.1074/jbc.M111.309377>
45. Lam, M. H. C., Thomas, R. J., Loveland, K. L. et al. (2002) Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules. Mol. Endocrinol. 16, 390-401. <https://doi.org/10.1210/mend.16.2.0775>
46. Landes, J. R., Moore, S. A., Bartley, B. R. et al. (2023) The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J. Cancer Res. Clin. Oncol. 149, 2139-2155. <https://doi.org/10.1007/s00432-022-04247-z>
47. Li, C., Goryaynov, A., Yang, W. (2016) The selective permeability barrier in the nuclear pore complex. Nucleus 7, 430-446. <https://doi.org/10.1080/19491034.2016.1238997>
48. Li, M., Li, X., Chen, S. et al. (2022) IPO5 mediates EMT and promotes esophageal cancer development through the RAS-ERK pathway. Oxid. Med. Cell. Longev. 2022, 6570879.
49. Li, X., Sun, L., Jin, Y. (2008) Identification of karyopherin-alpha 2 as an Oct4 associated protein. J. Genet. Genomics, 35, 723-728. <https://doi.org/10.1016/S1673-8527(08)60227-1>
50. Li, Y., Aksenova, V., Tingey, M. (2021) Distinct roles of nuclear basket proteins in directing the passage of mRNA through the nuclear pore. Proc. Natl. Acad. Sci. U.S.A. 118, e2015621118. <https://doi.org/10.1073/pnas.2015621118>
51. Liang, P., Zhang, H., Wang, G. et al. (2013) KPNB1, XPO7 and IPO8 mediate the translocation of NF-κB/p65 into the nucleus. Traffic 14, 1132-1143. <https://doi.org/10.1111/tra.12097>
52. Liao, W.-C., Lin, T.-J., Liu, Y.-C. et al. (2022) Nuclear accumulation of KPNA2 impacts radioresistance through positive regulation of the PLSCR1-STAT1 loop in lung adenocarcinoma. Cancer Sci. 113, 205-220. <https://doi.org/10.1111/cas.15197>
53. Lo, H.-W., Ali-Seyed, M., Wu, Y. et al. (2006) Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1. J. Cell. Biochem. 98, 1570-1583. <https://doi.org/10.1002/jcb.20876>
54. Lu, J., Wu, T., Zhang, B. (2021) Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun. Signal. 19, 60. <https://doi.org/10.1186/s12964-021-00741-y>
55. Lubert, E. J., Sarge, K. D. (2003) Interaction between protein phosphatase 2A and members of the importin β superfamily. Biochem. Biophys. Res. Commun. 303, 908-913. <https://doi.org/10.1016/S0006-291X(03)00434-0>
56. Macara, I. G. (2001) Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570-594, table of contents. <https://doi.org/10.1128/MMBR.65.4.570-594.2001>
57. Mackmull, M., Klaus, B., Heinze, I. et al. (2017) Landscape of nuclear transport receptor cargo specificity. Mol. Syst. Biol. 13, 962. <https://doi.org/10.15252/msb.20177608>
58. Matsuura, Y., Stewart, M. (2005) Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 24, 3681-3689. <https://doi.org/10.1038/sj.emboj.7600843>
59. Mehmood, R., Jibiki, K., Shibazaki, N. (2021) Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 7, e06039. <https://doi.org/10.1016/j.heliyon.2021.e06039>
60. Mingot, J.-M., Vega, S., Maestro, B. et al. (2009) Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. J. Cell Sci. 122(Pt 9), 1452-1460. <https://doi.org/10.1242/jcs.041749>
61. Mo, C. C., Yee, A. J., Midha, S. et al. (2023) Selinexor: targeting a novel pathway in multiple myeloma. EJHaem. 4, 792-810. <https://doi.org/10.1002/jha2.709>
62. Moore, J. D., Yang, J., Truant, R. et al. (1999) Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol. 144, 213-224. <https://doi.org/10.1083/jcb.144.2.213>
63. Moroianu, J., Blobel, G., Radu, A. (1995) Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. U.S.A. 92, 2008-2011. <https://doi.org/10.1073/pnas.92.6.2008>
64. Nachmias, B., Schimmer, A. D. (2020) Targeting nuclear import and export in hematological malignancies. Leukemia 34, 2875-2886. <https://doi.org/10.1038/s41375-020-0958-y>
65. Nguyen, K. T., Holloway, M. P., Altura, R. A. (2012) The CRM1 nuclear export protein in normal development and disease. Int. J. Biochem. Mol. Biol. 3, 137-151.
66. Oka, M., Yoneda, Y. (2018) Importin α: functions as a nuclear transport factor and beyond. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 94, 259-274. <https://doi.org/10.2183/pjab.94.018>
67. Padavannil, A., Sarkar, P., Kim, S. J. et al. (2019) Importin 9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone. ELife 8, e43630. <https://doi.org/10.7554/eLife.43630>
68. Pickard, B. W., Hodsman, A. B., Fraher, L. J. et al. (2006) Type 1 parathyroid hormone receptor (PTH1R) nuclear trafficking: association of PTH1R with importin α1 and β. Endocrinology 147, 3326-3332. <https://doi.org/10.1210/en.2005-1408>
69. Radu, A., Moore, M. S., Blobel, G. (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215-222. <https://doi.org/10.1016/0092-8674(95)90331-3>
70. Rexach, M., Blobel, G. (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683-692. <https://doi.org/10.1016/0092-8674(95)90181-7>
71. Rout, M. P., Aitchison, J. D., Suprapto, A. et al. (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635-651. <https://doi.org/10.1083/jcb.148.4.635>
72. Saulino, D. M., Younes, P. S., Bailey, J. M. et al. (2018) CRM1/XPO1 expression in pancreatic adenocarcinoma correlates with survivin expression and the proliferative activity. Oncotarget 9, 21289-21295. <https://doi.org/10.18632/oncotarget.25088>
73. Sellin, M., Berg, S., Hagen, P. et al. (2022) The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl. Oncol. 22, 101448. <https://doi.org/10.1016/j.tranon.2022.101448>
74. Shannon, P., Markiel, A., Ozier, O. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. <https://doi.org/10.1101/gr.1239303>
75. Soniat, M., Cağatay, T., Chook, Y. M. (2016) Recognition elements in the histone H3 and H4 tails for seven different importins. J. Biol. Chem. 291, 21171-21183. <https://doi.org/10.1074/jbc.M116.730218>
76. Soniat, M., Chook, Y. M. (2015) Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 468, 353-362. <https://doi.org/10.1042/BJ20150368>
77. Stelma, T., Chi, A., van der Watt, P. J. et al. (2016) Targeting nuclear transporters in cancer: diagnostic, prognostic and therapeutic potential. IUBMB Life 68, 268-280. <https://doi.org/10.1002/iub.1484>
78. Stewart, M. (2007) Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195-208. <https://doi.org/10.1038/nrm2114>
79. Stewart, M. (2022) Function of the nuclear transport machinery in maintaining the distinctive compositions of the nucleus and cytoplasm. Int. J. Mol. Sci. 23, 2578. <https://doi.org/10.3390/ijms23052578>
80. Subhash, V. V., Yeo, M. S., Wang, L. et al. (2018) Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci. Rep. 8, 12248. <https://doi.org/10.1038/s41598-018-30686-1>
81. Sung, H., Ferlay, J., Siegel, R. L. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. <https://doi.org/10.3322/caac.21660>
82. Szczepny, A., Wagstaff, K. M., Dias, M. et al. (2014) Overlapping binding sites for importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization. Biochem. J. 461, 469-476. <https://doi.org/10.1042/BJ20130709>
83. Tang, D., Chen, M., Huang, X. et al. (2023) SRplot: a free online platform for data visualization and graphing. PloS One 18, e0294236. <https://doi.org/10.1371/journal.pone.0294236>
84. Timney, B. L., Raveh, B., Mironska, R. et al. (2016) Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215, 57-76. <https://doi.org/10.1083/jcb.201601004>
85. Uhlen, M., Zhang, C., Lee, S. et al. (2017) A pathology atlas of the human cancer transcriptome. Science 357, eaan2507. <https://doi.org/10.1126/science.aan2507>
86. van der Watt, P. J., Chi, A., Stelma, T. et al. (2016) Targeting the nuclear import receptor Kpnβ1 as an anticancer therapeutic. Mol. Cancer Ther. 15, 560-573. <https://doi.org/10.1158/1535-7163.MCT-15-0052>
87. Waldmann, I., Wälde, S., Kehlenbach, R. H. (2007) Nuclear import of c-Jun is mediated by multiple transport receptors. J. Biol. Chem. 282, 27685-27692. <https://doi.org/10.1074/jbc.M703301200>
88. Wang, C.-I., Chien, K.-Y., Wang, C.-L. et al. (2012) Quantitative proteomics reveals regulation of karyopherin subunit alpha-2 (KPNA2) and its potential novel cargo proteins in nonsmall cell lung cancer. Mol. Cell. Proteomics 11, 1105-1122. <https://doi.org/10.1074/mcp.M111.016592>
89. Wang, S., Zhao, Y., Xia, N. et al. (2015) KPNβ1 promotes palmitate-induced insulin resistance via NF-κB signaling in hepatocytes. J. Physiol. Biochem. 71, 763-772. <https://doi.org/10.1007/s13105-015-0440-x>
90. Wente, S. R., Rout, M. P. (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562. <https://doi.org/10.1101/cshperspect.a000562>
91. Wilkie, S. E., Morris, K. J., Bhattacharya, S. S. et al. (2006) A study of the nuclear trafficking of the splicing factor protein PRPF31 linked to autosomal dominant retinitis pigmentosa (ADRP). Biochim. Biophys. Acta 1762, 304-311. <https://doi.org/10.1016/j.bbadis.2005.12.004>
92. Wing, C. E., Fung, H. Y. J., Chook, Y. M. (2022) Karyopherin-mediated nucleocytoplasmic transport. Nat. Rev. Mol. Cell Biol. 23, 307-328. <https://doi.org/10.1038/s41580-021-00446-7>
93. Winkler, J., Roessler, S., Sticht, C. et al. (2016) Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget 7, 22883-22892. <https://doi.org/10.18632/oncotarget.8256>
94. Winnepenninckx, V., Lazar, V., Michiels, S. et al. (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J. Natl. Cancer Inst. 98, 472-482. <https://doi.org/10.1093/jnci/djj103>
95. Xu, J., Xu, W., Xuan, Y. et al. (2021) Pancreatic cancer progression is regulated by IPO7/p53/LncRNA MALAT1/MiR-129-5p positive feedback loop. Front. Cell Dev. Biol. 9, 630262. <https://doi.org/10.3389/fcell.2021.630262>
96. Yang, F., Li, L., Mu, Z. et al. (2022) Tumor-promoting pro­perties of karyopherin β1 in melanoma by stabilizing Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Gene Ther. 29, 1939-1950. <https://doi.org/10.1038/s41417-022-00508-8>
97. Zhang, W., Lu, Y., Li, X. et al. (2019) IPO5 promotes the proliferation and tumourigenicity of colorectal cancer cells by mediating RASAL2 nuclear transportation. J. Exp. Clin. Cancer Res. 38, 296. <https://doi.org/10.1186/s13046-019-1290-0>
98. Zhang, X., Zhang, X., Mao, T. et al. (2021) CSE1L, as a novel prognostic marker, promotes pancreatic cancer proliferation by regulating the AKT/mTOR signaling pathway. J. Cancer 12, 2797-2806. <https://doi.org/10.7150/jca.54482>
99. Zhu, J., Wang, Y., Huang, H. et al. (2016) Upregulation of KPNβ1 in gastric cancer cell promotes tumor cell proliferation and predicts poor prognosis. Tumour Biol. 37, 661-672. <https://doi.org/10.1007/s13277-015-3839-7>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive