Fol. Biol. 2023, 69, 127-132
https://doi.org/10.14712/fb2023069040127
A Pilot Study on the Uptake of Propidium Iodide and YO-PRO-1 Iodide through the Pannexin Channels in Wallachian Frozen-Thawed Ram Spermatozoa
References
1. 2017) Optimization of protocols for Iberian red deer (Cervus elaphus hispanicus) sperm handling before sex sorting by flow cytometry. Theriogenology 92, 129-136.
< , L., Garcia-Álvarez, O., Maroto-Morales, A. et al. (https://doi.org/10.1016/j.theriogenology.2017.01.023>
2. 2022) Clustering and classification software for sperm subpopulation analysis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 10, 585-598.
Imbachí, F., Zalazar, L., Pastore, J. I. et al. (
3. 2015) Mass sperm motility is associated with fertility in sheep. Anim. Reprod. Sci. 161, 75-81.
< , I., Kohnke, P., Lagriffoul, G. et al. (https://doi.org/10.1016/j.anireprosci.2015.08.006>
4. 2009) Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 31, 953-974.
< , C., Ponsaerts, R., de Smedt, H. et al. (https://doi.org/10.1002/bies.200800236>
5. 2014) Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction 148, 221-235.
< Bolańos, J. M., Da Silva, C. M. B., Muńoz, P. M. et al. (https://doi.org/10.1530/REP-13-0191>
6. 2012) The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic-induced stress: role of c-Jun N-terminal kinase (JNK) pathway. J. Androl. 33, 105-113.
< , B. M., Moran, A. M., Fernández, L. G. et al. (https://doi.org/10.2164/jandrol.110.011957>
7. 1986) Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol. Reprod. 34, 127-138.
< , D. L., Pinkel, D., Johnson, L. A. et al. (https://doi.org/10.1095/biolreprod34.1.127>
8. 1990) Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biol. Reprod. 43, 55-64.
< , J. K., Kunze, E., Hammerstedt, R. H. (https://doi.org/10.1095/biolreprod43.1.55>
9. 2011) Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian J. Androl. 13, 406-419.
< , M. S., Johannisson, A., Wallgren, M. et al. (https://doi.org/10.1038/aja.2011.15>
10. 2021) Effects of antifreeze protein III on sperm cryopreservation of pacific abalone, Haliotis discus hannai. Int. J. Mol. Sci. 22, 3917.
< , S., Sharker, M. R., Cho, Y. et al. (https://doi.org/10.3390/ijms22083917>
11. 2019) Spermatozoa cryopreservation: state of art and future in small ruminants. Biopreserv. Biobank. 17, 171-182.
< , C., Wu, G., Hong, Q. et al. (https://doi.org/10.1089/bio.2018.0113>
12. 2022) Expression of TXNRD1, HSPA4L and ATP1B1 genes associated with the freezability of boar sperm. Int. J. Mol. Sci. 23, 9320.
< , A., Gilun, P., Zasiadczyk, Ł. et al. (https://doi.org/10.3390/ijms23169320>
13. 2004) Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol. Reprod. 71, 28-37.
< , G., Sabido, O., Durand, P. et al. (https://doi.org/10.1095/biolreprod.103.024281>
14. 2010) Probes and techniques for sperm evaluation by flow cytometry. Reprod. Domest. Anim. 45(Suppl. 2), 67-78.
< , F., Mata-Campuzano, M., Alvarez-Rodríguez, M. et al. (https://doi.org/10.1111/j.1439-0531.2010.01622.x>
15. 2022) Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19. Life Sci. 297, 120482.
< , Z., Mohammad-Rezaei, F., Aria, H. et al. (https://doi.org/10.1016/j.lfs.2022.120482>
16. 2008) Detection of “apoptosis-like” changes during the cryopreservation process in equine sperm. J. Androl. 29, 213-221.
< , C., Sotillo-Galán, Y., Varela-Fernández, E. et al. (https://doi.org/10.2164/jandrol.107.003640>
17. Petričáková, K., Janošíková, M., Ptáček, M. et al. (2022) Comparison of commercial poultry semen extenders modified for cryopreservation procedure in the genetic resource program of Czech golden spotted hen. Animals (Basel) 12,
<https://doi.org/10.3390/ani12202886>
18. 2019) Ram semen cryopreservation using egg yolk or egg yolk-free extenders: preliminary results. Sci. Agric. Bohem. 50, 96-103.
, M., Stádníková, M., Savvulidi, F. et al. (
19. 2022) Effect of extender on the quality and incubation resilience of cryopreserved Holstein bull semen. Czech J. Anim. Sci. 67, 75-86.
< , J., Savvulidi, F. G., Ducháček, J. et al. (https://doi.org/10.17221/196/2021-CJAS>
20. 2021) Optimizing the conventional method of sperm freezing in liquid nitrogen vapour for Wallachian sheep conservation program. Czech J. Anim. Sci. 66, 55-64.
< , F. G., Ptacek, M., Malkova, A. et al. (https://doi.org/10.17221/226/2020-CJAS>
21. 2017) Pannexin channels increase propidium iodide permeability in frozen-thawed dog spermatozoa. Reprod. Fertil. Dev. 29, 2269-2276.
< , J. L., Palomino, J., Moreno, R. D. et al. (https://doi.org/10.1071/RD16267>
22. 2008) Effect of liquid storage on membrane integrity and mitochondrial activity: a new diagnostic method of evaluating boar sperm quality. J. Anim. Feed Sci. 17, 372-380.
< , M., Bryła, M., Smorąg, Z. (https://doi.org/10.22358/jafs/66625/2008>
23. 2021) Ram semen quality can be assessed by flow cytometry several hours after post-fixation. Zygote 29, 130-137.
< , J., Svoradová, A., Baláži, A. et al. (https://doi.org/10.1017/S0967199420000581>
24. 2021) Cryopreservation of ram semen: manual versus programmable freezing and different lengths of equilibration. Anim. Sci. J. 92, e13670.
< , J., Makarevich, A. V., Balazi, A. et al. (https://doi.org/10.1111/asj.13670>
25. Vozaf, J., Svoradová, A., Baláži, A. et al. (2022) The cryopreserved sperm traits of various ram breeds: towards biodiversity conservation. Animals (Basel) 12
<https://doi.org/10.3390/ani12101311>
26. 2023) Molecular insights to the sperm-cervix interaction and the consequences for cryopreserved sperm. Biol. Reprod. 108, 183-196.
< , S., Pini, T., de Graaf, S. P. et al. (https://doi.org/10.1093/biolre/ioac188>