Fol. Biol. 2023, 69, 149-162

https://doi.org/10.14712/fb2023069050149

Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer

Ondřej Vít, Jiří Petrák

BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic

Received December 2023
Accepted December 2023

References

1. Albers, H. M., Dong, A., van Meeteren, L. A. et al. (2010a) Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc. Natl. Acad. Sci. U. S. A. 107, 7257-7262. <https://doi.org/10.1073/pnas.1001529107>
2. Albers, H. M., van Meeteren, L. A., Egan, D. A. et al. (2010b) Discovery and optimization of boronic acid based inhibitors of autotaxin. J. Med. Chem. 53, 4958-4967. <https://doi.org/10.1021/jm1005012>
3. Anliker, B., Chun, J. (2004) Cell surface receptors in lysophospholipid signaling. Semin. Cell Dev. Biol. 15, 457-465. <https://doi.org/10.1016/j.semcdb.2004.05.005>
4. Aoki, J., Taira, A., Takanezawa, Y. et al. (2002) Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J. Biol. Chem. 277, 48737-48744. <https://doi.org/10.1074/jbc.M206812200>
5. Argaud, D., Boulanger, M. C., Chignon, A. et al. (2019) Enhancer-mediated enrichment of interacting JMJD3-DDX21 to ENPP2 locus prevents R-loop formation and promotes transcription. Nucleic Acids Res. 47, 8424-8438. <https://doi.org/10.1093/nar/gkz560>
6. Azare, J., Doane, A., Leslie, K. et al. (2011) Stat3 mediates expression of autotaxin in breast cancer. PloS One 6, e27851. <https://doi.org/10.1371/journal.pone.0027851>
7. Bai, Z., Cai, L., Umemoto, E. et al. (2013) Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. J. Immunol. 190, 2036-2048. <https://doi.org/10.4049/jimmunol.1202025>
8. Balazs, L., Okolicany, J., Ferrebee, M. et al. (2000) Topical application of LPA accelerates wound healing. Ann. N. Y. Acad. Sci. 905, 270-273. <https://doi.org/10.1111/j.1749-6632.2000.tb06558.x>
9. Baker, D. L., Fujiwara, Y., Pigg, K. R. et al. (2006) Carba analogs of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis. J. Biol. Chem. 281, 22786-22793. <https://doi.org/10.1074/jbc.M512486200>
10. Banerjee, S., Norman, D. D., Lee, S. C. et al. (2017) Highly potent non-carboxylic acid autotaxin inhibitors reduce me­lanoma metastasis and chemotherapeutic resistance of breast cancer stem cells. J. Med. Chem. 60, 1309-1324. <https://doi.org/10.1021/acs.jmedchem.6b01270>
11. Barbayianni, E., Kaffe, E., Aidinis, V. et al. (2015) Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog. Lipid Res. 58, 76-96. <https://doi.org/10.1016/j.plipres.2015.02.001>
12. Benesch, M. G., Tang, X., Maeda, T. et al. (2014) Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J. 28, 2655-2666. <https://doi.org/10.1096/fj.13-248641>
13. Benesch, M. G., Tang, X., Dewald, J. et al. (2015a) Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J. 29, 3990-4000. <https://doi.org/10.1096/fj.15-274480>
14. Benesch, M. G., Zhao, Y. Y., Curtis, J. M. et al. (2015b) Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J. Lipid Res. 56, 1134-1144. <https://doi.org/10.1194/jlr.M057661>
15. Benesch, M. G., Ko, Y. M., Tang, X. et al. (2015c) Autotaxin is an inflammatory mediator and therapeutic target in thyroid cancer. Endocr. Relat. Cancer 22, 593-607. <https://doi.org/10.1530/ERC-15-0045>
16. Bhave, S. R., Dadey, D. Y., Karvas, R. M. et al. (2013) Autotaxin inhibition with PF-8380 enhances the radiosensitivity of human and murine glioblastoma cell lines. Front. Oncol. 3, 236. <https://doi.org/10.3389/fonc.2013.00236>
17. Billon-Denis, E., Tanfin, Z., Robin, P. (2008) Role of lysophosphatidic acid in the regulation of uterine leiomyoma cell proliferation by phospholipase D and autotaxin. J. Lipid Res. 49, 295-307. <https://doi.org/10.1194/jlr.M700171-JLR200>
18. Boucharaba, A., Guillet, B., Menaa, F. et al. (2009) Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms. Oncol. Res. 18, 173-184. <https://doi.org/10.3727/096504009790217399>
19. Brindley, D. N., Lin, F. T., Tigyi, G. J. (2013) Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. Biochim. Biophys. Acta 1831, 74-85. <https://doi.org/10.1016/j.bbalip.2012.08.015>
20. Cao, P., Walker, N. M., Braeuer, R. R. et al. (2020) Loss of FOXF1 expression promotes human lung-resident mesenchymal stromal cell migration via ATX/LPA/LPA1 signaling axis. Sci. Rep. 10, 21231. <https://doi.org/10.1038/s41598-020-77601-1>
21. Centonze, M., Di Conza, G., Lahn, M. et al. (2023) Autotaxin inhibitor IOA-289 reduces gastrointestinal cancer progression in preclinical models. J. Exp. Clin. Cancer Res. 42, 197. <https://doi.org/10.1186/s13046-023-02780-4>
22. Chabaud, S., Marcoux, T. L., Deschęnes-Rompré, M. P. et al. (2015) Lysophosphatidic acid enhances collagen deposition and matrix thickening in engineered tissue. J. Tissue Eng. Regen. Med. 9, E65-E75. <https://doi.org/10.1002/term.1711>
23. Chen, M., O’Connor, K. L. (2005) Integrin α6β4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene 24, 5125-5130. <https://doi.org/10.1038/sj.onc.1208729>
24. Chen, J., Li, H., Xu, W. et al. (2021) Evaluation of serum ATX and LPA as potential diagnostic biomarkers in patients with pancreatic cancer. BMC Gastroenterol. 21, 58. <https://doi.org/10.1186/s12876-021-01635-6>
25. Choi, J. W., Herr, D. R., Noguchi, K. et al. (2010) LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 50, 157-186. <https://doi.org/10.1146/annurev.pharmtox.010909.105753>
26. Choi, J. A., Kim, H., Kwon, H. et al. (2023) Ascitic autotaxin as a potential prognostic, diagnostic, and therapeutic target for epithelial ovarian cancer. Br. J. Cancer 129, 1184-1194. <https://doi.org/10.1038/s41416-023-02355-2>
27. Clair, T., Lee, H. Y., Liotta, L. A. et al. (1997) Autotaxin is an exoenzyme possessing 5’-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J. Biol. Chem. 272, 996-1001. <https://doi.org/10.1074/jbc.272.2.996>
28. Conrotto, P., Andréasson, U., Kuci, V. et al. (2011) Knock-down of SOX11 induces autotaxin-dependent increase in proliferation in vitro and more aggressive tumors in vivo. Mol. Oncol. 5, 527-537. <https://doi.org/10.1016/j.molonc.2011.08.001>
29. Cooper, A. B., Wu, J., Lu, D. et al. (2007) Is autotaxin (ENPP2) the link between hepatitis C and hepatocellular cancer? J. Gastrointest. Surg. 11, 1628-1635. <https://doi.org/10.1007/s11605-007-0322-9>
30. Dai, W., Wang, F., He, L. et al. (2015) Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol. Carcinog. 54, 301-311. <https://doi.org/10.1002/mc.22100>
31. Deken, M. A., Niewola-Staszkowska, K., Peyruchaud, O. et al. (2023) Characterization and translational development of IOA-289, a novel autotaxin inhibitor for the treatment of solid tumors. Immunooncol. Technol. 18, 100384. <https://doi.org/10.1016/j.iotech.2023.100384>
32. Deng, W., Wang, D. A., Gosmanova, E. et al. (2003) LPA protects intestinal epithelial cells from apoptosis by inhibiting the mitochondrial pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G821-G829. <https://doi.org/10.1152/ajpgi.00406.2002>
33. Desroy, N., Housseman, C., Bock, X. et al. (2017) Discovery of 2-[[2-ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl] piperazin-1-yl]-8-methylimidazo[1,2-a]pyridin-3-yl]methylamino]-4-(4-fluorophenyl)thiazole-5-carbonitrile (GLPG1690), a first-in-class autotaxin inhibitor undergoing clinical evaluation for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 60, 3580-3590. <https://doi.org/10.1021/acs.jmedchem.7b00032>
34. Farquhar, M. J., Humphreys, I. S., Rudge, S. A. et al. (2017) Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. J. Hepatol. 66, 919-929. <https://doi.org/10.1016/j.jhep.2017.01.009>
35. Ferry, G., Giganti, A., Cogé, F. et al. (2007) Functional invalidation of the autotaxin gene by a single amino acid mutation in mouse is lethal. FEBS Lett. 581, 3572-3578. <https://doi.org/10.1016/j.febslet.2007.06.064>
36. Federico, L., Jeong, K. J., Vellano, C. P. et al. (2016) Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J. Lipid Res. 57, 25-35. <https://doi.org/10.1194/jlr.R060020>
37. Fotopoulou, S., Oikonomou, N., Grigorieva, E. et al. (2010) ATX expression and LPA signalling are vital for the development of the nervous system. Dev. Biol. 339, 451-464. <https://doi.org/10.1016/j.ydbio.2010.01.007>
38. Fulkerson, Z., Wu, T., Sunkara, M. et al. (2011) Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. J. Biol. Chem. 286, 34654-34663. <https://doi.org/10.1074/jbc.M111.276725>
39. Gaetano, C. G., Samadi, N., Tomsig, J. L. et al. (2009) Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol. Carcinog. 48, 801-809. <https://doi.org/10.1002/mc.20524>
40. Gao, J., Aksoy, B. A., Dogrusoz, U. et al. (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1. <https://doi.org/10.1126/scisignal.2004088>
41. Georas S. N. (2009) Lysophosphatidic acid and autotaxin: emerging roles in innate and adaptive immunity. Immunol. Res. 45, 229-238. <https://doi.org/10.1007/s12026-009-8104-y>
42. Gierse, J., Thorarensen, A., Beltey, K. et al. (2010) A novel autotaxin inhibitor reduces lysophosphatidic acid levels in plasma and the site of inflammation. J. Pharmacol. Exp. Ther. 334, 310-317. <https://doi.org/10.1124/jpet.110.165845>
43. Giganti, A., Rodriguez, M., Fould, B. et al. (2008) Murine and human autotaxin α, β, and γ isoforms: gene organization, tissue distribution, and biochemical characterization. J. Biol. Chem. 283, 7776-7789. <https://doi.org/10.1074/jbc.M708705200>
44. Gijsbers, R., Ceulemans, H., Stalmans, W. et al. (2001) Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphat­ases. J. Biol. Chem. 276, 1361-1368. <https://doi.org/10.1074/jbc.M007552200>
45. Goding, J. W., Grobben, B., Slegers, H. (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim. Biophys. Acta 1638, 1-19. <https://doi.org/10.1016/S0925-4439(03)00058-9>
46. Goetzl, E. J., An, S. (1999) A subfamily of G protein-coupled cellular receptors for lysophospholipids and lysosphingolipids. Adv. Exp. Med. Biol. 469, 259-264. <https://doi.org/10.1007/978-1-4615-4793-8_38>
47. Hanahan, D., Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. <https://doi.org/10.1016/j.cell.2011.02.013>
48. Hashimoto, T., Okudaira, S., Igarashi, K. et al. (2012) Identification and biochemical characterization of a novel autotaxin isoform, ATXδ, with a four-amino acid deletion. J. Biochem. 151, 89-97. <https://doi.org/10.1093/jb/mvr126>
49. Hashimoto, S., Mikami, S., Sugino, H. et al. (2016) Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. Nat. Commun. 7, 10656. <https://doi.org/10.1038/ncomms10656>
50. Hausmann, J., Kamtekar, S., Christodoulou, E. et al. (2011) Structural basis of substrate discrimination and integrin binding by autotaxin. Nat. Struct. Mol. Biol. 18, 198-204. <https://doi.org/10.1038/nsmb.1980>
51. He, L., Yang, Y., Chen, J. et al. (2021) Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin‑induced toxicity. Mol. Med. Rep. 24, 668. <https://doi.org/10.3892/mmr.2021.12307>
52. Hoelzinger, D. B., Mariani, L., Weis, J. et al. (2005) Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7, 7-16. <https://doi.org/10.1593/neo.04535>
53. Houben, A. J., van Wijk, X. M., van Meeteren, L. A. et al. (2013) The polybasic insertion in autotaxin α confers specific binding to heparin and cell surface heparan sulfate proteoglycans. J. Biol. Chem. 288, 510-519. <https://doi.org/10.1074/jbc.M112.358416>
54. Ishii, S., Hirane, M., Fukushima, K. et al. (2015) Diverse effects of LPA4, LPA5 and LPA6 on the activation of tumor progression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 461, 59-64. <https://doi.org/10.1016/j.bbrc.2015.03.169>
55. Jaramillo, M. C., Zhang, D. D. (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179-2191. <https://doi.org/10.1101/gad.225680.113>
56. Jansen, S., Stefan, C., Creemers, J. W. et al. (2005) Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J. Cell Sci. 118(Pt 14), 3081-3089. <https://doi.org/10.1242/jcs.02438>
57. Jansen, S., Callewaert, N., Dewerte, I. et al. (2007) An essential oligomannosidic glycan chain in the catalytic domain of autotaxin, a secreted lysophospholipase-D. J. Biol. Chem. 282, 11084-11091. <https://doi.org/10.1074/jbc.M611503200>
58. Jansen, S., Andries, M., Derua, R. et al. (2009) Domain interplay mediated by an essential disulfide linkage is critical for the activity and secretion of the metastasis-promoting enzyme autotaxin. J. Biol. Chem. 284, 14296-14302. <https://doi.org/10.1074/jbc.M900790200>
59. Jongsma, M., Matas-Rico, E., Rzadkowski, A. et al. (2011) LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PloS One 6, e29260. <https://doi.org/10.1371/journal.pone.0029260>
60. Jose, A., Kienesberger, P. C. (2021) Autotaxin-LPA-LPP3 axis in energy metabolism and metabolic disease. Int. J. Mol Sci. 22, 9575. <https://doi.org/10.3390/ijms22179575>
61. Kaffe, E., Katsifa, A., Xylourgidis, N. et al. (2017) Hepatocyte autotaxin expression promotes liver fibrosis and cancer. Hepatology 65, 1369-1383. <https://doi.org/10.1002/hep.28973>
62. Kanda, H., Newton, R., Klein, R. et al. (2008) Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat. Immunol. 9, 415-423. <https://doi.org/10.1038/ni1573>
63. Kang, Y. C., Kim, K. M., Lee, K. S. et al. (2004) Serum bioactive lysophospholipids prevent TRAIL-induced apoptosis via PI3K/Akt-dependent cFLIP expression and Bad phosphorylation. Cell Death Differ. 11, 1287-1298. <https://doi.org/10.1038/sj.cdd.4401489>
64. Katsifa, A., Kaffe, E., Nikolaidou-Katsaridou, N. et al. (2015) The bulk of autotaxin activity is dispensable for adult mouse life. PloS One 10, e0143083. <https://doi.org/10.1371/journal.pone.0143083>
65. Kehlen, A., Englert, N., Seifert, A. et al. (2004) Expression, regulation and function of autotaxin in thyroid carcinomas. Int. J. Cancer 109, 833-838. <https://doi.org/10.1002/ijc.20022>
66. Kishi, Y., Okudaira, S., Tanaka, M. et al. (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J. Biol. Chem. 281, 17492-17500. <https://doi.org/10.1074/jbc.M601803200>
67. Knowlden, S., Georas, S. N. (2014) The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J. Immunol. 192, 851-857. <https://doi.org/10.4049/jimmunol.1302831>
68. Konen, J. M., Rodriguez, B. L., Wu, H. et al. (2023) Autotaxin suppresses cytotoxic T cells via LPAR5 to promote anti-PD-1 resistance in non-small cell lung cancer. J. Clin. Invest. 133, e163128. <https://doi.org/10.1172/JCI163128>
69. Kurano, M., Miyagaki, T., Miyagawa, T. et al. (2018) Association between serum autotaxin or phosphatidylserine-specific phospholipase A1 levels and melanoma. J. Dermatol. 45, 571-579. <https://doi.org/10.1111/1346-8138.14278>
70. Leblanc, R., Sahay, D., Houssin, A. et al. (2018) Autotaxin-β interaction with the cell surface via syndecan-4 impacts on cancer cell proliferation and metastasis. Oncotarget 9, 33170-33185. <https://doi.org/10.18632/oncotarget.26039>
71. Lee, H. Y., Murata, J., Clair, T. et al. (1996) Cloning, chromosomal localization, and tissue expression of autotaxin from human teratocarcinoma cells. Biochem. Biophys. Res. Commun. 218, 714-719. <https://doi.org/10.1006/bbrc.1996.0127>
72. Lee, J., Jung, I. D., Nam, S. W. et al. (2001) Enzymatic activation of autotaxin by divalent cations without EF-hand loop region involvement. Biochem. Pharmacol. 62, 219-224. <https://doi.org/10.1016/S0006-2952(01)00658-X>
73. Lee, Z., Cheng, C. T., Zhang, H. et al. (2008) Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol. Biol. Cell 19, 5435-5445. <https://doi.org/10.1091/mbc.e08-03-0316>
74. Li, S., Wang, B., Xu, Y. et al. (2011) Autotaxin is induced by TSA through HDAC3 and HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis. Mol. Cancer 10, 18. <https://doi.org/10.1186/1476-4598-10-18>
75. Li, H., Yue, R., Wei, B. et al. (2014) Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis. EMBO J. 33, 1383-1396. <https://doi.org/10.15252/embj.201387594>
76. Li, H. Y., Oh, Y. S., Choi, J. W. et al. (2017) Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice. Kidney Int. 91, 1362-1373. <https://doi.org/10.1016/j.kint.2016.11.010>
77. Lin, M. E., Herr, D. R., Chun, J. (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 91, 130-138. <https://doi.org/10.1016/j.prostaglandins.2009.02.002>
78. Lin, K. H., Lee, S. C., Dacheux, M. A. et al. (2023) E2F7 drives autotaxin/Enpp2 transcription via chromosome looping: repression by p53 in murine but not in human carcinomas. FASEB J. 37, e23058. <https://doi.org/10.1096/fj.202300838R>
79. Liu, S., Murph, M., Panupinthu, N. et al. (2009a) ATX-LPA receptor axis in inflammation and cancer. Cell Cycle 8, 3695-3701. <https://doi.org/10.4161/cc.8.22.9937>
80. Liu, S., Umezu-Goto, M., Murph, M. et al. (2009b) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15, 539-550. <https://doi.org/10.1016/j.ccr.2009.03.027>
81. Magkrioti, C., Antonopoulou, G., Fanidis, D. et al. (2022) Lysophosphatidic acid is a proinflammatory stimulus of renal tubular epithelial cells. Int. J. Mol. Sci. 23, 7452. <https://doi.org/10.3390/ijms23137452>
82. Maher, T. M., van der Aar, E. M., van de Steen, O. et al. (2018) Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial. Lancet Respir. Med. 6, 627-635. <https://doi.org/10.1016/S2213-2600(18)30181-4>
83. Matas-Rico, E., Frijlink, E., van der Haar Ŕvila, I. et al. (2021) Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8+ T cells. Cell Rep. 37, 110013. <https://doi.org/10.1016/j.celrep.2021.110013>
84. Masuda, A., Nakamura, K., Izutsu, K. et al. (2008) Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br. J. Haematol. 143, 60-70. <https://doi.org/10.1111/j.1365-2141.2008.07325.x>
85. Mazzocca, A., Dituri, F., Lupo, L. et al. (2011) Tumor-secreted lysophostatidic acid accelerates hepatocellular carcinoma progression by promoting differentiation of peritumoral fibroblasts in myofibroblasts. Hepatology 54, 920-930. <https://doi.org/10.1002/hep.24485>
86. Mazzocca, A., Schönauer, L. M., De Nola, R. et al. (2018) Autotaxin is a novel molecular identifier of type I endometrial cancer. Med. Oncol. 35, 157. <https://doi.org/10.1007/s12032-018-1222-4>
87. Meng, Y., Kang, S., Fishman, D. A. (2005) Lysophosphatidic acid inhibits anti-Fas-mediated apoptosis enhanced by actin depolymerization in epithelial ovarian cancer. FEBS Lett. 579, 1311-1319. <https://doi.org/10.1016/j.febslet.2005.01.026>
88. Meng, G., Tang, X., Yang, Z. et al. (2017) Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J. 31, 4064-4077. <https://doi.org/10.1096/fj.201700159R>
89. Meng, G., Tang, X., Yang, Z. et al. (2019) Dexamethasone decreases the autotaxin-lysophosphatidate-inflammatory axis in adipose tissue: implications for the metabolic syndrome and breast cancer. FASEB J. 33, 1899-1910. <https://doi.org/10.1096/fj.201801226R>
90. Moolenaar, W. H., Perrakis, A. (2011) Insights into autotaxin: how to produce and present a lipid mediator. Nat. Rev. Mol. Cell Biol. 12, 674-679. <https://doi.org/10.1038/nrm3188>
91. Murata, J., Lee, H. Y., Clair, T. et al. (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem. 269, 30479-30484. <https://doi.org/10.1016/S0021-9258(18)43838-0>
92. Murph, M. M. (2019) MicroRNA regulation of the autotaxin-lysophosphatidic acid signaling axis. Cancers (Basel) 11, 1369. <https://doi.org/10.3390/cancers11091369>
93. Nakai, Y., Ikeda, H., Nakamura, K. et al. (2011) Specific increase in serum autotaxin activity in patients with pancreatic cancer. Clin. Biochem. 44, 576-581. <https://doi.org/10.1016/j.clinbiochem.2011.03.128>
94. Nishimasu, H., Okudaira, S., Hama, K. et al. (2011) Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat. Struct. Mol. Biol. 18, 205-212. <https://doi.org/10.1038/nsmb.1998>
95. Nishimura, S., Nagasaki, M., Okudaira, S. et al. (2014) ENPP2 contributes to adipose tissue expansion and insulin resistance in diet-induced obesity. Diabetes 63, 4154-4164. <https://doi.org/10.2337/db13-1694>
96. Nouh, M. A., Wu, X. X., Okazoe, H. et al. (2009) Expression of autotaxin and acylglycerol kinase in prostate cancer: association with cancer development and progression. Cancer Sci. 100, 1631-1638. <https://doi.org/10.1111/j.1349-7006.2009.01234.x>
97. Oda, S. K., Strauch, P., Fujiwara, Y. et al. (2013) Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunol. Res. 1, 245-255. <https://doi.org/10.1158/2326-6066.CIR-13-0043-T>
98. Ortlepp, C., Steudel, C., Heiderich, C. et al. (2013) Autotaxin is expressed in FLT3-ITD positive acute myeloid leukemia and hematopoietic stem cells and promotes cell migration and proliferation. Exp. Hematol. 41, 444-461.e4. <https://doi.org/10.1016/j.exphem.2013.01.007>
99. Panagopoulou, M., Fanidis, D., Aidinis, V. et al. (2021) ENPP2 methylation in health and cancer. Int. J. Mol. Sci. 22, 11958. <https://doi.org/10.3390/ijms222111958>
100. Panagopoulou, M., Drosouni, A., Fanidis, D. et al. (2022) ENPP2 promoter methylation correlates with decreased gene expression in breast cancer: implementation as a liquid biopsy biomarker. Int. J. Mol. Sci. 23, 3717. <https://doi.org/10.3390/ijms23073717>
101. Park, S. Y., Jeong, K. J., Panupinthu, N. et al. (2011) Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene 30, 1351-1359. <https://doi.org/10.1038/onc.2010.517>
102. Patterson, A. D., Maurhofer, O., Beyoglu, D. et al. (2011) Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 71, 6590-6600. <https://doi.org/10.1158/0008-5472.CAN-11-0885>
103. Piersma, B., Hayward, M. K., Weaver, V. M. (2020) Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356. <https://doi.org/10.1016/j.bbcan.2020.188356>
104. Pietrobono, S., Sabbadini, F., Bertolini, M. et al. (2023) Autotaxin secretion is a stromal mechanism of adaptive resistance to TGFβ inhibition in pancreatic ductal adenocarcinoma. Cancer Res. Online ahead. <https://doi.org/10.1158/0008-5472.CAN-23-0104>
105. Pradère, J. P., Tarnus, E., Grès, S. et al. (2007) Secretion and lysophospholipase D activity of autotaxin by adipocytes are controlled by N-glycosylation and signal peptidase. Biochim. Biophys. Acta 1771, 93-102. <https://doi.org/10.1016/j.bbalip.2006.11.010>
106. Ptaszynska, M. M., Pendrak, M. L., Stracke, M. L. et al. (2010) Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration. Mol. Cancer Res. 8, 309-321. <https://doi.org/10.1158/1541-7786.MCR-09-0288>
107. Qu, M., Long, Y., Wang, Y. et al. (2023) Hypoxia increases ATX expression by histone crotonylation in a HIF-2α-dependent manner. Int. J. Mol. Sci. 24, 7031. <https://doi.org/10.3390/ijms24087031>
108. Ray, R., Rai, V. (2017) Lysophosphatidic acid converts monocytes into macrophages in both mice and humans. Blood 129, 1177-1183. <https://doi.org/10.1182/blood-2016-10-743757>
109. Rivera-Lopez, C. M., Tucker, A. L., Lynch, K. R. (2008) Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis 11, 301-310. <https://doi.org/10.1007/s10456-008-9113-5>
110. Rusovici, R., Ghaleb, A., Shim, H. et al. (2007) Lysophosphatidic acid prevents apoptosis of Caco-2 colon cancer cells via activation of mitogen-activated protein kinase and phosphorylation of Bad. Biochim. Biophys. Acta 1770, 1194-1203. <https://doi.org/10.1016/j.bbagen.2007.04.008>
111. Ryu, J. M., Han, H. J. (2015) Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways. Stem Cells 33, 819-832. <https://doi.org/10.1002/stem.1882>
112. Saga, H., Ohhata, A., Hayashi, A. et al. (2014) A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension. PloS One 9, e93230. <https://doi.org/10.1371/journal.pone.0093230>
113. Sah, J. P., Hao, N. T. T., Han, X. et al. (2020) Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling. Int. J. Biochem. Cell Biol. 118, 105661. <https://doi.org/10.1016/j.biocel.2019.105661>
114. Samadi, N., Bekele, R. T., Goping, I. S. et al. (2011) Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest. PloS One 6, e20608. <https://doi.org/10.1371/journal.pone.0020608>
115. Satoh, Y., Ohkawa, R., Nakamura, K. et al. (2007) Lysophosphatidic acid protection against apoptosis in the human pre-B-cell line Nalm-6. Eur. J. Haematol. 78, 510-517. <https://doi.org/10.1111/j.1600-0609.2007.00849.x>
116. Saunders, L. P., Ouellette, A., Bandle, R. et al. (2008) Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Mol. Cancer Ther. 7, 3352-3362. <https://doi.org/10.1158/1535-7163.MCT-08-0463>
117. Saunders, L. P., Cao, W., Chang, W. C. et al. (2011) Kinetic analysis of autotaxin reveals substrate-specific catalytic pathways and a mechanism for lysophosphatidic acid distribution. J. Biol. Chem. 286, 30130-30141. <https://doi.org/10.1074/jbc.M111.246884>
118. Sevastou, I., Kaffe, E., Mouratis, M. A. et al. (2013) Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim. Biophys. Acta 1831, 42-60. <https://doi.org/10.1016/j.bbalip.2012.07.019>
119. Shah, B. H., Baukal, A. J., Shah, F. B. et al. (2005) Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol. Endocrinol. 19, 2535-2548. <https://doi.org/10.1210/me.2005-0082>
120. Shao, Y., Yu, Y., He, Y. et al. (2019) Serum ATX as a novel biomarker for breast cancer. Medicine (Baltimore) 98, e14973. <https://doi.org/10.1097/MD.0000000000014973>
121. Shao, Z. C., Zhu, B. H., Huang, A. F. et al. (2022) Docosahexaenoic acid reverses epithelial-mesenchymal transition and drug resistance by impairing the PI3K/AKT/Nrf2/GPX4 signalling pathway in docetaxel-resistant PC3 prostate cancer cells. Folia Biol. (Praha) 68, 59-71. <https://doi.org/10.14712/fb2022068020059>
122. Shea, B. S., Tager, A. M. (2012) Role of the lysophospholipid mediators lysophosphatidic acid and sphingosine 1-phosphate in lung fibrosis. Proc. Am. Thorac. Soc. 9, 102-110. <https://doi.org/10.1513/pats.201201-005AW>
123. Shida, D., Watanabe, T., Aoki, J. et al. (2004) Aberrant expression of lysophosphatidic acid (LPA) receptors in human colorectal cancer. Lab. Invest. 84, 1352-1362. <https://doi.org/10.1038/labinvest.3700146>
124. Sioletic, S., Czaplinski, J., Hu, L. et al. (2014) c-Jun promotes cell migration and drives expression of the motility factor ENPP2 in soft tissue sarcomas. J. Pathol. 234, 190-202. <https://doi.org/10.1002/path.4379>
125. Song, J., Clair, T., Noh, J. H. et al. (2005) Autotaxin (lysoPLD/NPP2) protects fibroblasts from apoptosis through its enzymatic product, lysophosphatidic acid, utilizing albumin-bound substrate. Biochem. Biophys. Res. Commun. 337, 967-975. <https://doi.org/10.1016/j.bbrc.2005.09.140>
126. Stassar, M. J., Devitt, G., Brosius, M. et al. (2001) Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. Br. J. Cancer 85, 1372-1382. <https://doi.org/10.1054/bjoc.2001.2074>
127. Stefan, C., Jansen, S., Bollen, M. (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem. Sci. 30, 542-550. <https://doi.org/10.1016/j.tibs.2005.08.005>
128. Stracke, M. L., Krutzsch, H. C., Unsworth, E. J. et al. (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 267, 2524-2529. <https://doi.org/10.1016/S0021-9258(18)45911-X>
129. Sui, Y., Yang, Y., Wang, J. et al. (2015) Lysophosphatidic acid inhibits apoptosis induced by cisplatin in cervical cancer cells. Biomed Res. Int. 2015, 598386. <https://doi.org/10.1155/2015/598386>
130. Sun, H., Ren, J., Zhu, Q. et al. (2009) Effects of lysophosphatidic acid on human colon cancer cells and its mechanisms of action. World J. Gastroenterol. 15, 4547-4555. <https://doi.org/10.3748/wjg.15.4547>
131. Sun, S., Zhang, X., Lyu, L. et al. (2016) Autotaxin expression is regulated at the post-transcriptional level by the RNA-binding proteins HuR and AUF1. J. Biol. Chem. 291, 25823-25836. <https://doi.org/10.1074/jbc.M116.756908>
132. Sun, S., Wang, R., Song, J. et al. (2017) Blocking gp130 signaling suppresses autotaxin expression in adipocytes and improves insulin sensitivity in diet-induced obesity. J. Lipid Res. 58, 2102-2113. <https://doi.org/10.1194/jlr.M075655>
133. Takahashi, K., Fukushima, K., Onishi, Y. et al. (2017) Lysophosphatidic acid (LPA) signaling via LPA4 and LPA6 negatively regulates cell motile activities of colon cancer cells. Biochem. Biophys. Res. Commun. 483, 652-657. <https://doi.org/10.1016/j.bbrc.2016.12.088>
134. Takeda, A., Kobayashi, D., Aoi, K. et al. (2016) Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility. eLife 5, e10561. <https://doi.org/10.7554/eLife.10561>
135. Tanaka, M., Okudaira, S., Kishi, Y. et al. (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J. Biol. Chem. 281, 25822-25830. <https://doi.org/10.1074/jbc.M605142200>
136. Tang, X., Benesch, M. G., Brindley, D. N. (2015) Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J. Lipid Res. 56, 2048-2060. <https://doi.org/10.1194/jlr.R058362>
137. Tang, X., Wuest, M., Benesch, M. G. K. et al. (2020) Inhibition of autotaxin with GLPG1690 increases the efficacy of radiotherapy and chemotherapy in a mouse model of breast cancer. Mol. Cancer Ther. 19, 63-74. <https://doi.org/10.1158/1535-7163.MCT-19-0386>
138. Tang, X., Morris, A. J., Deken, M. A. et al. (2023) Autotaxin inhibition with IOA-289 decreases breast tumor growth in mice whereas knockout of autotaxin in adipocytes does not. Cancers (Basel) 15, 2937. <https://doi.org/10.3390/cancers15112937>
139. Tigyi, G. (2010) Aiming drug discovery at lysophosphatidic acid targets. Br. J. Pharmacol. 161, 241-270. <https://doi.org/10.1111/j.1476-5381.2010.00815.x>
140. Tokumura, A., Majima, E., Kariya, Y. et al. (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 277, 39436-39442. <https://doi.org/10.1074/jbc.M205623200>
141. Tokumura, A., Kume, T., Fukuzawa, K. et al. (2007) Peritoneal fluids from patients with certain gynecologic tumor contain elevated levels of bioactive lysophospholipase D activity. Life Sci. 80, 1641-1649. <https://doi.org/10.1016/j.lfs.2006.12.041>
142. Umata, T., Hirata, M., Takahashi, T. et al. (2001) A dual signaling cascade that regulates the ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J. Biol. Chem. 276, 30475-30482. <https://doi.org/10.1074/jbc.M103673200>
143. Umezu-Goto, M., Kishi, Y., Taira, A. et al. (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 158, 227-233. <https://doi.org/10.1083/jcb.200204026>
144. van Corven, E. J., van Rijswijk, A., Jalink, K. et al. (1992) Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem. J. 281(Pt 1), 163-169. <https://doi.org/10.1042/bj2810163>
145. van Meeteren, L. A., Ruurs, P., Stortelers, C. et al. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell. Biol. 26, 5015-5022. <https://doi.org/10.1128/MCB.02419-05>
146. Venkatraman, G., Benesch, M. G., Tang, X. et al. (2015) Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J. 29, 772-785. <https://doi.org/10.1096/fj.14-262659>
147. Vidot, S., Witham, J., Agarwal, R. et al. (2010) Autotaxin delays apoptosis induced by carboplatin in ovarian cancer cells. Cell. Signal. 22, 926-935. <https://doi.org/10.1016/j.cellsig.2010.01.017>
148. Vít, O., Talacko, P., Musil, Z. et al. (2023) Identification of potential molecular targets for the treatment of cluster 1 human pheochromocytoma and paraganglioma via comprehensive proteomic characterization. Clin. Proteomics 20, 39. <https://doi.org/10.1186/s12014-023-09428-7>
149. Wang, Y., Lyu, L., Zhang, X. et al. (2019) Autotaxin is a novel target of microRNA-101-3p. FEBS Open Bio 9, 707-716. <https://doi.org/10.1002/2211-5463.12608>
150. Williams, T. M., Williams, M. E., Kuick, R. et al. (2005) Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability. Dev. Biol. 279, 462-480. <https://doi.org/10.1016/j.ydbio.2004.12.015>
151. Wu, J. M., Xu, Y., Skill, N. J. et al. (2010) Autotaxin expression and its connection with the TNF-alpha-NF-κB axis in human hepatocellular carcinoma. Mol. Cancer 9, 71. <https://doi.org/10.1186/1476-4598-9-71>
152. Wu, T., Kooi, C. V., Shah, P. et al. (2014) Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. FASEB J. 28, 861-870. <https://doi.org/10.1096/fj.13-232868>
153. Xie, D., Yu, S., Li, L. et al. (2020) The FOXM1/ATX signaling contributes to pancreatic cancer development. Am. J. Transl. Res. 12, 4478-4487.
154. Xu, Y., Fang, X. J., Casey, G. et al. (1995) Lysophospholipids activate ovarian and breast cancer cells. Biochem J. 309(Pt 3), 933-940. <https://doi.org/10.1042/bj3090933>
155. Xu, M. Y., Porte, J., Knox, A. J. et al. (2009) Lysophosphatidic acid induces αvβ6 integrin-mediated TGF-β activation via the LPA2 receptor and the small G protein Gαq. Am. J. Pathol. 174, 1264-1279. <https://doi.org/10.2353/ajpath.2009.080160>
156. Xu, A., Khan, A. K.., Chen, F. et al. (2016) Overexpression of autotaxin is associated with human renal cell carcinoma and bladder carcinoma and their progression. Med. Oncol. 33, 131. <https://doi.org/10.1007/s12032-016-0836-7>
157. Xu, X., Zhang, Y., Zhang, J. et al. (2020) NSun2 promotes cell migration through methylating autotaxin mRNA. J. Biol. Chem. 295, 18134-18147. <https://doi.org/10.1074/jbc.RA119.012009>
158. Yang, Y., Mou, L.-J., Liu, N. et al. (1999) Autotaxin expression in non-small-cell lung cancer. Am. J. Respir. Cell Mol. Biol. 21, 216-222. <https://doi.org/10.1165/ajrcmb.21.2.3667>
159. Yu, S., Murph, M. M., Lu, Y. et al. (2008) Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J. Natl. Cancer Inst. 100, 1630-1642. <https://doi.org/10.1093/jnci/djn378>
160. Yung, Y. C., Stoddard, N. C., Chun, J. (2014) LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid Res. 55, 1192-1214. <https://doi.org/10.1194/jlr.R046458>
161. Zhang, Y., Chen, Y. C., Krummel, M. F. et al. (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914-3924. <https://doi.org/10.4049/jimmunol.1201604>
162. Zeng, R., Li, B., Huang, J. et al. (2017) Lysophosphatidic acid is a biomarker for peritoneal carcinomatosis of gastric cancer and correlates with poor prognosis. Genet. Test. Mol. Biomarkers 21, 641-648. <https://doi.org/10.1089/gtmb.2017.0060>
163. Zuckerman, V., Sokolov, E., Swet, J. H. et al. (2016) Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells. Oncotarget 7, 2951-2967. <https://doi.org/10.18632/oncotarget.6696>
164. Zulfikar, S., Mulholland, S., Adamali, H. et al. (2020) Inhibitors of the autotaxin-lysophosphatidic acid axis and their potential in the treatment of interstitial lung disease: current perspectives. Clin. Pharmacol. 12, 97-108.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive