Fol. Biol. 2023, 69, 163-172

https://doi.org/10.14712/fb2023069050163

MiR-19a-3p Promotes Aerobic Glycolysis in Ovarian Cancer Cells via IGFBP3/PI3K/AKT Pathway

Lijun Du, Kaikai Dou, Dan Zhang, Huidong Xia, Nianhai Liang, Ningping Wang, Jianmin Sun, Ru Bai

School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China

Received October 2023
Accepted December 2023

References

1. Bai, R., Cui, Z., Ma, Y. et al. (2019) The NF-κB-modulated miR-19a-3p enhances malignancy of human ovarian cancer cells through inhibition of IGFBP-3 expression. Mol. Carcinog. 58, 2254-2265. <https://doi.org/10.1002/mc.23113>
2. Bonelli, M., Terenziani, R., Zoppi, S. et al. (2020) Dual inhibition of CDK4/6 and PI3K/AKT/mTOR signaling impairs energy metabolism in MPM cancer cells. Int. J. Mol. Sci. 21, 5165. <https://doi.org/10.3390/ijms21145165>
3. Cai, K., Chen, S., Zhu, C. et al. (2022) FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis. Cell Death Dis. 13, 765. <https://doi.org/10.1038/s41419-022-05213-w>
4. Chen, C., Chen, P. Y., Lin, Y. Y. et al. (2019) Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J. Neurosurg. 132, 168-179. <https://doi.org/10.3171/2018.8.JNS181217>
5. Dong, S., Liang, S., Cheng, Z. et al. (2022) ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res. 41, 15. <https://doi.org/10.1186/s13046-021-02229-6>
6. Duan, F., Mei, C., Yang, L. et al. (2020) Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci. Rep. 1, 7714. <https://doi.org/10.1038/s41598-020-64880-x>
7. Han, R. L., Wang, F. P., Zhang, P. A. et al. (2017) miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDH. Neoplasma 64, 244-252. <https://doi.org/10.4149/neo_2017_211>
8. Hanahan, D., Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. <https://doi.org/10.1016/j.cell.2011.02.013>
9. He, L., Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531. <https://doi.org/10.1038/nrg1379>
10. Hill, M., Tran, N. (2021) miRNA interplay: mechanisms and consequences in cancer. Dis. Model. Mech. 14, 1-9. <https://doi.org/10.1242/dmm.047662>
11. Hosios, A. M., Manning, B. D. (2021) Cancer signaling drives cancer metabolism: AKT and the Warburg effect. Cancer Res. 81, 4896-4898. <https://doi.org/10.1158/0008-5472.CAN-21-2647>
12. Hou, Y. L., Luo, P., Ji, G. Y. et al. (2019) Clinical significance of serum IGFBP-3 in colorectal cancer. J. Clin. Lab. Anal. 33, e22912. <https://doi.org/10.1002/jcla.22912>
13. Jin, L., Shen, F., Weinfeld, M. et al. (2020) Insulin growth factor binding protein 7 (IGFBP7)-related cancer and IGFBP3 and IGFBP7 crosstalk. Front. Oncol. 10, 727. <https://doi.org/10.3389/fonc.2020.00727>
14. Jogie-Brahim, S., Feldman, D., Oh, Y. (2009) Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr. Rev. 30, 417-437. <https://doi.org/10.1210/er.2008-0028>
15. Li, H., Xu, H., Xing, R. et al. (2019a) Pyruvate kinase M2 contributes to cell growth in gastric cancer via aerobic glycolysis. Pathol. Res. Pract. 215, 152409. <https://doi.org/10.1016/j.prp.2019.04.001>
16. Li, T., Han, J., Jia, L. et al. (2019b) PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation. Protein Cell 10, 583-594. <https://doi.org/10.1007/s13238-019-0618-z>
17. Li, Y., Xu, Q., Yang, W. et al. (2019c) Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells. Gene 712, 143956. <https://doi.org/10.1016/j.gene.2019.143956>
18. Lin, L. H., Chou, H. C., Chang, S. J. et al. (2020) Targeting UDP-glucose dehydrogenase inhibits ovarian cancer growth and metastasis. J. Cell. Mol. Med. 24, 11883-11902. <https://doi.org/10.1111/jcmm.15808>
19. Lin, S., Li, Y., Wang, D. et al. (2021) Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett. 518, 230-242. <https://doi.org/10.1016/j.canlet.2021.07.025>
20. Lu, J., Wang, L., Chen, W. et al. (2019) miR-603 targeted hexokinase-2 to inhibit the malignancy of ovarian cancer cells. Arch. Biochem. Biophys. 661, 1-9. <https://doi.org/10.1016/j.abb.2018.10.014>
21. Luo, X., Zheng, E., Wei, L. et al. (2021) The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 12, 328. <https://doi.org/10.1038/s41419-021-03596-w>
22. Maringe, C., Walters, S. Butler, J. et al. (2012) Stage at diagnosis and ovarian cancer survival: evidence from the International Cancer Benchmarking Partnership. Gynecol. Oncol. 127, 75-82. <https://doi.org/10.1016/j.ygyno.2012.06.033>
23. Navarro, R., Tapia-Galisteo, A., Martín-García, L. et al. (2020) TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol. Oncol. 14, 2609-2628. <https://doi.org/10.1002/1878-0261.12779>
24. Park, J. H., Pyun, W. Y., Park, H. W. (2020) Cancer metabolism: phenotype, signaling and therapeutic targets. Cells 9, 2308. <https://doi.org/10.3390/cells9102308>
25. Shen, Y., Zhao, S., Wang, S. et al. (2019) S1P/S1PR3 axis promotes aerobic glycolysis by YAP/c-MYC/PGAM1 axis in osteosarcoma. EBioMedicine 40, 210-223. <https://doi.org/10.1016/j.ebiom.2018.12.038>
26. Sung, H., Ferlay, J., Siegel, R. L. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. <https://doi.org/10.3322/caac.21660>
27. Tian, L. Y., Smit, D. J., Jücker, M. (2023) The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int. J. Mol. Sci. 24, 2652. <https://doi.org/10.3390/ijms24032652>
28. Vazquez, A., Kamphorst, J. J., Markert, E. K. et al. (2016) Cancer metabolism at a glance. J. Cell Sci. 129, 3367-3373. <https://doi.org/10.1242/jcs.181016>
29. Wang, L., Guo, W., Ma, J. et al. (2017) Aberrant SIRT6 expression contributes to melanoma growth: role of the autophagy paradox and IGF-AKT signaling. Autophagy 7, 1-16.
30. Wang, Y., Pan, S., He, X. et al. (2021) CPNE1 enhances colorectal cancer cell growth, glycolysis, and drug resistance through regulating the AKT-GLUT1/HK2 pathway. Onco Targets Ther. 14, 699-710. <https://doi.org/10.2147/OTT.S284211>
31. Wu, S., Le, H. (2013) Dual roles of PKM2 in cancer metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 45, 27-35. <https://doi.org/10.1093/abbs/gms106>
32. Xiaohong, Z., Lichun, F., Na, X. et al. (2016) MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumor Biol. 37, 14989-14997. <https://doi.org/10.1007/s13277-016-5415-1>
33. Yang, L., Li, J., Fu, S. et al. (2019) Up-regulation of insulin-like growth factor binding protein-3 is associated with brain metastasis in lung adenocarcinoma. Mol. Cells 42, 321-332.
34. Zhang, C., Liu, N. (2022) Noncoding RNAs in the glycolysis of ovarian cancer. Front. Pharmacol. 13, 855488. <https://doi.org/10.3389/fphar.2022.855488>
35. Zhang, Q., Han, Z., Zhu, Y. et al. (2021) Role of hypoxia inducible factor-1 in cancer stem cells (review). Mol. Med. Rep. 23, 17.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive