Fol. Biol. 2023, 69, 173-180

https://doi.org/10.14712/fb2023069050173

Early-Onset Neonatal Sepsis: Inflammatory Biomarkers and MicroRNA as Potential Diagnostic Tools in Preterm Newborns

Petr Janec1, Marek Mojžíšek2, Martin Pánek1, Martin Haluzík3, Jan Živný4, Jan Janota2,4,5

1Department of Neonatology, Masaryk Hospital Ústí nad Labem, Krajská zdravotní, Ústí nad Labem, Czech Republic
2Neonatal Unit, Department of Obstetrics and Gynaecology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
3Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
4Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
5Department of Neonatology, Thomayer University Hospital, Prague, Czech Republic

Received December 2023
Accepted January 2024

References

1. Aird, W. C. (2008) Endothelium in health and disease. Pharmacol. Rep. 60, 139-143.
2. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. <https://doi.org/10.1016/j.cell.2009.01.002>
3. Benitz, W. E., Wynn, J. L., Polin, R. A. (2015) Reappraisal of guidelines for management of neonates with suspected early-onset sepsis. J. Pediatr. 166, 1070-1074. <https://doi.org/10.1016/j.jpeds.2014.12.023>
4. GBD 2015 Child Mortality Collaborators (2016) Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1725-1774.
5. Cook-Mills, J. M., Deem, T. L. (2005) Active participation of endothelial cells in inflammation. J. Leukoc. Biol. 77, 487-495. <https://doi.org/10.1189/jlb.0904554>
6. Eichberger, J., Resch, E., Resch, B. (2022) Diagnosis of neonatal sepsis: the role of inflammatory markers. Front. Pediatr. 10, 840288. <https://doi.org/10.3389/fped.2022.840288>
7. Escobar, G. J., Puopolo, K. M., Wi, S. et al. (2014) Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks’ gestation. Pediatrics 133, 30-36. <https://doi.org/10.1542/peds.2013-1689>
8. Figueras-Aloy, J., Gómez, L., Rodríguez-Miguélez, J. M. et al. (2003) Plasma nitrite/nitrate and endothelin-1 concentrations in neonatal sepsis. Acta Paediatr. 92, 582-587. <https://doi.org/10.1111/j.1651-2227.2003.tb02511.x>
9. Fjalstad, J. W., Stensvold, H. J., Bergseng, H. et al. (2016) Early-onset sepsis and antibiotic exposure in term infants: a nationwide population-based study in Norway. Pediatr. Infect. Dis. J. 35, 1-6. <https://doi.org/10.1097/INF.0000000000000906>
10. Fouda, E., Elrazek Midan, D. A., Ellaban, R. et al. (2021) The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochem. Biophys. Rep. 26, 100988.
11. Garcia-Giralt, N., Du, J., Marin-Corral, J. et al. (2022) Circulating microRNA profiling is altered in the acute respiratory distress syndrome related to SARS-CoV-2 infection. Sci. Rep. 12, 6929. <https://doi.org/10.1038/s41598-022-10738-3>
12. Gong, L., Xu, H., Chang, H. et al. (2018) Knockdown of long non-coding RNA MEG3 protects H9c2 cells from hypoxia-induced injury by targeting microRNA-183. J. Cell. Biochem. 119, 1429-1440. <https://doi.org/10.1002/jcb.26304>
13. Hofer, N., Müller, W., Resch, B. (2010) Systemic inflammatory response syndrome (SIRS) definition and correlation with early-onset bacterial infection of the newborn. Arch. Dis. Child. Fetal Neonatal Ed. 95, F151. <https://doi.org/10.1136/adc.2009.161638>
14. Jansen, F., Yang, X., Hoelscher, M. et al. (2013) Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128, 2026-2038. <https://doi.org/10.1161/CIRCULATIONAHA.113.001720>
15. Jiang, F., Li, J., Wu, G. et al. (2015) Upregulation of micro­RNA335 and microRNA584 contributes to the pathogenesis of severe preeclampsia through downregulation of endothelial nitric oxide synthase. Mol. Med. Rep. 12, 5383-5390. <https://doi.org/10.3892/mmr.2015.4018>
16. Jouza, M., Bohosova, J., Stanikova, A. et al. (2022) MicroRNA as an early biomarker of neonatal sepsis. Front. Pediatr. 10, 854324. <https://doi.org/10.3389/fped.2022.854324>
17. Klingenberg, C., Kornelisse, R. F., Buonocore, G. et al. (2018) Culture-negative early-onset neonatal sepsis – at the crossroad between efficient sepsis care and antimicrobial stewardship. Front. Pediatr. 6, 285. <https://doi.org/10.3389/fped.2018.00285>
18. Lei, J., Fu, Y., Zhuang, Y. et al. (2019) miR-382-3p suppressed IL-1β induced inflammatory response of chondrocytes via the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43. J. Cell. Physiol. 234, 23160-23168. <https://doi.org/10.1002/jcp.28882>
19. Li, X., Cao, Y., Xu, X. et al. (2023) Sleep deprivation promotes endothelial inflammation and atherogenesis by reducing exosomal miR-182-5p. Arterioscler. Thromb. Vasc. Biol. 43, 995-1014. <https://doi.org/10.1161/ATVBAHA.123.319026>
20. Li, Y., Ke, J., Peng, C. et al. (2018) MicroRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. Biomed. Pharmacother. 108, 271-279. <https://doi.org/10.1016/j.biopha.2018.08.064>
21. Liu, X., Zhan, Z., Xu, L. et al. (2010) MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J. Immunol. 185, 7244-7251. <https://doi.org/10.4049/jimmunol.1001573>
22. Mohangoo, A. D., Buitendijk, S. E., Szamotulska, K. et al. (2011) Gestational age patterns of fetal and neonatal mortality in Europe: results from the Euro-Peristat project. PloS One 6, e24727. <https://doi.org/10.1371/journal.pone.0024727>
23. Mussap, M., Cibecchini, F., Noto, A. et al. (2013) In search of biomarkers for diagnosing and managing neonatal sepsis: the role of angiopoietins. J. Matern. Fetal Neonatal Med. 26 (Suppl. 2), 24-26. <https://doi.org/10.3109/14767058.2013.830411>
24. NICE (2021) Neonatal infection: antibiotics for prevention and treatment. NICE guideline (NG195).
25. Ng, P. C., Chan, K. Y. Y., Yuen, T. P. et al. (2019) Plasma miR-1290 is a novel and specific biomarker for early diagnosis of necrotizing enterocolitis-biomarker discovery with prospective cohort evaluation. J. Pediatr. 205, 83-90.e10. <https://doi.org/10.1016/j.jpeds.2018.09.031>
26. Paulus, P., Jennewein, C., Zacharowski, K. (2011) Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers 16 (Suppl. 1), S11-S21. <https://doi.org/10.3109/1354750X.2011.587893>
27. Sahni, A., Narra, H. P., Patel, J. et al. (2017) MicroRNA signature of human microvascular endothelium infected with Rickettsia rickettsii. Int. J. Mol. Sci. 18, E1471. <https://doi.org/10.3390/ijms18071471>
28. Scalavino, V., Piccinno, E., Valentini, A. M. et al. (2023) miR-369-3p modulates intestinal inflammatory response via BRCC3/NLRP3 inflammasome axis. Cells 12, 2184. <https://doi.org/10.3390/cells12172184>
29. Schulfer, A., Blaser, M. J. (2015) Risks of antibiotic exposures early in life on the developing microbiome. PLoS Pathog. 11, e1004903. <https://doi.org/10.1371/journal.ppat.1004903>
30. Sibikova, M., Vitkova, V., Jamrichova, L. et al. (2020) Spontaneous delivery is associated with increased endothelial activity in cord blood compared to elective Caesarean section. Eur. J. Obstet. Gynecol. Reprod. Biol. 251, 229-234. <https://doi.org/10.1016/j.ejogrb.2020.05.059>
31. Simak, J., Gelderman, M. P. (2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus. Med. Rev. 20, 1-26. <https://doi.org/10.1016/j.tmrv.2005.08.001>
32. Simak, J., Holada, K., Risitano, A. M. et al. (2004) Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 125, 804-813. <https://doi.org/10.1111/j.1365-2141.2004.04974.x>
33. Simonsen, K. A., Anderson-Berry, A. L., Delair, S. F. et al. (2014) Early-onset neonatal sepsis. Clin. Microbiol. Rev. 27, 21-47. <https://doi.org/10.1128/CMR.00031-13>
34. Stoll, B. J., Hansen, N. I., Sanchez, P. J. et al. (2011) Early onset neonatal sepsis: the burden of group B streprococcal and E. coli disease continues. Pediatrics 127, 817-826. <https://doi.org/10.1542/peds.2010-2217>
35. Stranak, Z., Berka, I., Korcek, P. et al. (2021) Bacterial DNA detection in very preterm infants assessed for risk of early onset sepsis. J. Perinat. Med. 50, 356-362. <https://doi.org/10.1515/jpm-2021-0184>
36. Su, S., Zhao, Q., He, C. et al. (2015) miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat. Commun. 6, 8523. <https://doi.org/10.1038/ncomms9523>
37. Sun, X., Icli, B., Wara, A. K. et al. (2012) MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J. Clin. Invest. 122, 1973-1990.
38. Thaver, D., Zaidi, A. K. (2009) Burden of neonatal infections in developing countries: a review of evidence from community-based studies. Pediatr. Infect. Dis. J. 28 (Suppl. 1), S3-S9. <https://doi.org/10.1097/INF.0b013e3181958755>
39. van den Hoogen, A., Gerards, L. J., Verboon-Maciolek, M. A. et al. (2010) Long-term trends in the epidemiology of neonatal sepsis and antibiotic susceptibility of causative agents. Neonatology 97, 22-28. <https://doi.org/10.1159/000226604>
40. Vitkova, V., Panek, M., Janec, P. et al. (2018) Endothelial microvesicles and soluble markers of endothelial injury in critically ill newborns. Mediators Inflamm. 2018, 1975056. <https://doi.org/10.1155/2018/1975056>
41. Vitkova, V., Zivny, J., Janota, J. (2018) Endothelial cell-derived microvesicles: potential mediators and biomarkers of pathologic processes. Biomark. Med. 12, 161-175. <https://doi.org/10.2217/bmm-2017-0182>
42. Wan, L., Zhao, Q., Niu, G. et al. (2018) Plasma miR-136 can be used to screen patients with knee osteoarthritis from healthy controls by targeting IL-17. Exp. Ther. Med. 16, 3419-3424.
43. Wang, J., Bai, X., Song, Q. et al. (2015) miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int. J. Mol. Sci. 16, 24965-24982. <https://doi.org/10.3390/ijms161024965>
44. Wang, J. F., Yu, M. L., Yu, G. et al. (2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 394, 184-188. <https://doi.org/10.1016/j.bbrc.2010.02.145>
45. Watkin, R. L., Fitzpatrick, G. G., Kerrigan, S. W. (2018) The evolving role of microRNAs in endothelial cell dysfunction in response to infection. Semin. Thromb. Hemost. 44, 216-223.
46. Weiss, S. L., Fitzgerald, J. C., Balamuth, F. et al. (2014) Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med. 42, 2409-2417. <https://doi.org/10.1097/CCM.0000000000000509>
47. Whitney, J. E., Silverman, M., Norton, J. S. et al. (2020) Vascular endothelial growth factor and soluble vascular endothelial growth factor receptor as novel biomarkers for poor outcomes in children with severe sepsis and septic shock. Pediatr. Emerg. Care 36, e715-e719. <https://doi.org/10.1097/PEC.0000000000001638>
48. Wynn, J. L., Wilson, C. S., Hawiger, J. et al. (2016) Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc. Natl. Acad. Sci. U. S. A. 113, E2627-E2635. <https://doi.org/10.1073/pnas.1515793113>
49. Zeitlin, J. K. Wildman, G., Bréart, S. et al. (2003) Selecting an indicator set for monitoring and evaluating perinatal health in Europe: criteria, methods and results from the PERISTAT project. Eur. J. Obst. Gynecol. Reprod. Biol. 111 (Suppl. 1), S5-S14. <https://doi.org/10.1016/j.ejogrb.2003.09.002>
50. Zhang, Y., Zhan, Y., Liu, D. et al. (2019) Inhibition of microRNA-183 expression resists human umbilical vascular endothelial cells injury by upregulating expression of IRS1. Drug Deliv. 26, 612-621. <https://doi.org/10.1080/10717544.2019.1628117>
51. Zhu, J., Huang, X., Su, G. et al. (2014) High expression levels of microRNA-629, microRNA-525-5p and microRNA- 516a-3p in paediatric systemic lupus erythematosus. Clin. Rheumatol. 33, 807-815. <https://doi.org/10.1007/s10067-014-2583-5>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive