Fol. Biol. 2023, 69, 181-185
https://doi.org/10.14712/fb2023069050181
CD14 Polymorphism Is Not Associated with SARS-CoV-2 Infection in Central European Population
References
1. 2021) Immunological predictors of disease severity in patients with COVID-19. Int. J. Infect. Dis. 110, 83-92.
< , A., AlShekaili, J., Al Kindi, M. et al. (https://doi.org/10.1016/j.ijid.2021.06.056>
2. 2021) Levels of soluble CD14 and tumor necrosis factor receptors 1 and 2 may be predictive of death in severe coronavirus disease 2019. J. Infect. Dis. 223, 805-810.
< , E. R., Cameron, C. M. A., Avery, A. et al. (https://doi.org/10.1093/infdis/jiaa744>
3. 2020) COVID-19: a multidisciplinary review. Front. Public Health 8, 383.
< , N., Chams, S., Badran, R. et al. (https://doi.org/10.3389/fpubh.2020.00383>
4. 2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536-544.
Study Group of the International Committee on Taxonomy of Viruses (
5. 2022) Host polymorphisms and COVID-19 infection. Adv. Clin. Chem. 107, 41-77.
< , J. R., Speeckaert, M. M. (https://doi.org/10.1016/bs.acc.2021.07.002>
6. 2004) Association of the −159C → T polymorphism in the CD14 promoter with variations in serum lipoproteins in healthy subjects. Blood Coagul. Fibrinolysis 15, 365-366.
< , J. A., Skodova, Z., Adamkova, V. et al. (https://doi.org/10.1097/00001721-200406000-00013>
7. 1999) C(-260)→T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 99, 3218-3220. Erratum in: Circulation 100, 2550.
< , J. A., Rothe, G., Piťha, J. et al. (https://doi.org/10.1161/01.CIR.99.25.3218>
8. 2021a) Effects of selected inherited factors on susceptibility to SARS-CoV-2 infection and COVID-19 progression. Physiol. Res. 70(S2), S125-S134.
< , J. A. (https://doi.org/10.33549/physiolres.934730>
9. 2021b) CCR5Δ32 deletion as a protective factor in Czech first-wave COVID-19 subjects. Physiol. Res. 70, 111-115.
< , J. A., Dusek, L., Majek, O. et al. (https://doi.org/10.33549/physiolres.934647>
10. 2021c) ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors. Clin. Chim. Acta 519, 206-209.
< , J. A., Dusek, L., Majek, O. et al. (https://doi.org/10.1016/j.cca.2021.04.024>
11. 2023a) ABCA3 and LZTFL1 polymorphisms and risk of COVID-19 in the Czech population. Physiol. Res. 72, 539-543.
< , J. A., Philipp, T., Adamkova, V. et al. (https://doi.org/10.33549/physiolres.935108>
12. 2023b) A haemochromatosis-causing HFE mutation is associated with SARS-CoV-2 susceptibility in the Czech population. Clin. Chim. Acta 538, 211-215.
< , J. A., Philipp, T., Adamkova, V. et al. (https://doi.org/10.1016/j.cca.2022.12.025>
13. 2020) Beyond genomes and the Covid-19 pandemic. Folia Biol. (Praha) 66, 85.
< , Z. (https://doi.org/10.14712/fb2020066030085>
14. 2021) Prolonged viral shedding of SARS-CoV-2 and related factors in symptomatic COVID-19 patients: a prospective study. BMC Infect. Dis. 21, 1282.
< , H., Zhao, J., Zeng, H. L. et al. (https://doi.org/10.1186/s12879-021-07002-w>
15. 2021) Clinical manifestation, laboratory and radiology finding, treatment and outcomes of COVID-19: a systematic review and meta-analysis. J. Res. Med. Sci. 26, 41.
, N. D., Nadali, J., Divani, A. et al. (
16. 2020) COVID-19 and the immune system. Physiol. Res. 69, 379-388.
< , J., Strizova, Z., Smrz, D. et al. (https://doi.org/10.33549/physiolres.934492>
17. 2020) CD14 (C-159T) polymorphism is associated with increased susceptibility to SLE, and plasma levels of soluble CD14 is a novel biomarker of disease activity: a hospital-based case-control study. Lupus 30, 219-227.
< , A. K., Tripathy, R., Das, B. K. (https://doi.org/10.1177/0961203320972799>
18. 2021) A cluster of differentiation 14 (CD14) polymorphism (C-159T rs2569190) is associated with SARS-CoV-2 infection and mortality in the European population. J. Infect. Dis. 224, 921-922.
< , A., Padhi, S., Panda, D. et al. (https://doi.org/10.1093/infdis/jiab180>
19. 2020) Genomewide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med. 383, 1522-1534.
Covid-19 GWAS Group, Ellinghaus, D., Degenhardt, F. et al. (
20. 2021) The disproportionate impact of COVID-19 on racial and ethnic minorities in the United States. Clin. Infect. Dis. 72, 703-706.
< , D. B. G., Shah, A., Doubeni, C. A. et al. (https://doi.org/10.1093/cid/ciaa815>
21. 2022) COVID-19 in the Czech Republic 2020 and 2021: comparative analysis of probable work-related transmission of the coronavirus SARS-CoV-2. Cent. Eur. J. Public Health 30, 201-204.
< , M., Vaněček, V. (https://doi.org/10.21101/cejph.a7610>
22. 2020) Transfer factor as an option for managing the COVID-19 pandemic. Folia Biol. (Praha) 66, 86-90.
< , D., Pizza, G., De Vinci, C. et al. (https://doi.org/10.14712/fb2020066030086>
23. 2007) High prevalence of the CD14-159CC genotype in patients infected with severe acute respiratory syndrome-associated coronavirus. Clin. Vaccine Immunol. 14, 1644-1645.
< , F. F., Boehm, I., Chan, P. K. et al. (https://doi.org/10.1128/CVI.00100-07>
24. 2021) Associations between genetically predicted protein levels and COVID-19 severity. J. Infect. Dis. 223, 19-22.
< , J., Wu, C., Wu, L. (https://doi.org/10.1093/infdis/jiaa660>
25. 2021) Increased sCD163 and sCD14 plasmatic levels and depletion of peripheral blood pro-inflammatory monocytes, myeloid and plasmacytoid dendritic cells in patients with severe COVID-19 pneumonia. Front. Immunol. 12, 627548.
< , M. A., Nijhawan, P., Carraro, A. (https://doi.org/10.3389/fimmu.2021.627548>