Fol. Biol. 2023, 69, 194-196

https://doi.org/10.14712/fb2023069050194

Many Ways to the Cell Cycle Exit after Inhibition of CDK4/6

Libor Macůrek

Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic

Received December 2023
Accepted December 2023

References

1. Björklund, M. (2019) Cell size homeostasis: metabolic control of growth and cell division. Biochim. Biophys. Acta Mol. Cell Res. 1866, 409-417. <https://doi.org/10.1016/j.bbamcr.2018.10.002>
2. Cheng, L., Chen, J. Kong, Y. et al. (2021) Size-scaling promotes senescence-like changes in proteome and organelle content. bioRxiv. <https://doi.org/10.1101/2021.08.05.455193>
3. Cornwell, J. A., Crncec, A., Afifi, M. M. et al. (2023) Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal. Nature 619, 363-370. <https://doi.org/10.1038/s41586-023-06274-3>
4. Crozier, L., Foy, R., Adib, R. et al. (2023) CDK4/6 inhibitor-mediated cell overgrowth triggers osmotic and replication stress to promote senescence. Mol. Cell 83, 4062-4077. <https://doi.org/10.1016/j.molcel.2023.10.016>
5. Crozier, L., Foy, R., Mouery, B. L. et al. (2022) CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J. 41, e108599. <https://doi.org/10.15252/embj.2021108599>
6. Fassl, A., Geng, Y., Sicinski, P. (2022) CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495. <https://doi.org/10.1126/science.abc1495>
7. Foy, R., Crozier, L., Pareri, A. U. et al. (2023) Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol. Cell 83, 4047-4061. <https://doi.org/10.1016/j.molcel.2023.10.020>
8. Krenning, L., Feringa, F. M., Shaltiel, I. A. et al. (2014) Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol. Cell 55, 59-72. <https://doi.org/10.1016/j.molcel.2014.05.007>
9. Lanz, M. C., Zatulovskiy, E., Swaffer, M. P. et al. (2022) Increasing cell size remodels the proteome and promotes senescence. Mol. Cell 82, 3255-3269. <https://doi.org/10.1016/j.molcel.2022.07.017>
10. Liu, S., Ginzberg, M. B., Patel, N. et al. (2018) Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. Elife 7, e26947. <https://doi.org/10.7554/eLife.26947>
11. Manohar, S., Estrada, M. E., Uliana, F. et al. (2023) Genome homeostasis defects drive enlarged cells into senescence. Mol. Cell 83, 4032-4046. <https://doi.org/10.1016/j.molcel.2023.10.018>
12. Matson, J. P., House, A. M., Grant, G. D. et al. (2019) Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence. J. Cell Biol. 218, 2169-2184. <https://doi.org/10.1083/jcb.201902143>
13. Morrison, L., Loibl, S., Turner, N. C. (2023) The CDK4/6 inhibitor revolution – a game-changing era for breast cancer treatment. Nat. Rev. Clin. Oncol. 21, 89-105. <https://doi.org/10.1038/s41571-023-00840-4>
14. Müllers, E., Cascales, H. S., Jaiswal, H. et al. (2014) Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle 13, 2733-2743. <https://doi.org/10.4161/15384101.2015.945831>
15. Neurohr, G. E., Terry, R. L., Lengefeld, J. (2019) Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176, 1083-1097. <https://doi.org/10.1016/j.cell.2019.01.018>
16. Schmitt, C. A., Wang, B., Demaria, M. (2022) Senescence and cancer – role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619-636. <https://doi.org/10.1038/s41571-022-00668-4>
17. Schmoller, K. M., Turner, J. J., Kőivomägi, M. et al. (2015) Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature 526, 268-272. <https://doi.org/10.1038/nature14908>
18. Tan, C., Ginzberg, M. B., Webster, R. et al. (2021) Cell size homeostasis is maintained by CDK4-dependent activation of p38 MAPK. Dev. Cell 56, 1756-1769. <https://doi.org/10.1016/j.devcel.2021.04.030>
19. Wagner, V., Gil, J. (2020) Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene 39, 5165-5176. <https://doi.org/10.1038/s41388-020-1354-9>
20. Wang, B., Varela-Eirin, M., Brandenburg, S. M. et al. (2022a) Pharmacological CDK4/6 inhibition reveals a p53-dependent senescent state with restricted toxicity. EMBO J. 41, e108946. <https://doi.org/10.15252/embj.2021108946>
21. Wang, L., Lankhorst, L., Bernards, R. (2022b) Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340-355. <https://doi.org/10.1038/s41568-022-00450-9>
22. Zatulovskiy, E., Lanz, M. C., Zhang, S. et al. (2022) Delineation of proteome changes driven by cell size and growth rate. Front. Cell Dev. Biol. 10, 980721. <https://doi.org/10.3389/fcell.2022.980721>
23. Zatulovskiy, E., Skotheim, J. M. (2020) On the molecular mechanisms regulating animal cell size homeostasis. Trends Genet. 36, 360-372. <https://doi.org/10.1016/j.tig.2020.01.011>
24. Zatulovskiy, E., Zhang, S., Berenson, D. F. et al. (2020) Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science 369, 466-471. <https://doi.org/10.1126/science.aaz6213>
25. Zhang, M., Kim, S., Yang, H. W. (2023) Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity. Nat. Commun. 14, 7847. <https://doi.org/10.1038/s41467-023-43716-y>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive