Fol. Biol. 2023, 69, 194-196
https://doi.org/10.14712/fb2023069050194
Many Ways to the Cell Cycle Exit after Inhibition of CDK4/6
References
1. 2019) Cell size homeostasis: metabolic control of growth and cell division. Biochim. Biophys. Acta Mol. Cell Res. 1866, 409-417.
< , M. (https://doi.org/10.1016/j.bbamcr.2018.10.002>
2. Cheng, L., Chen, J. Kong, Y. et al. (2021) Size-scaling promotes senescence-like changes in proteome and organelle content. bioRxiv.
<https://doi.org/10.1101/2021.08.05.455193>
3. 2023) Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal. Nature 619, 363-370.
< , J. A., Crncec, A., Afifi, M. M. et al. (https://doi.org/10.1038/s41586-023-06274-3>
4. 2023) CDK4/6 inhibitor-mediated cell overgrowth triggers osmotic and replication stress to promote senescence. Mol. Cell 83, 4062-4077.
< , L., Foy, R., Adib, R. et al. (https://doi.org/10.1016/j.molcel.2023.10.016>
5. 2022) CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J. 41, e108599.
< , L., Foy, R., Mouery, B. L. et al. (https://doi.org/10.15252/embj.2021108599>
6. 2022) CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495.
< , A., Geng, Y., Sicinski, P. (https://doi.org/10.1126/science.abc1495>
7. 2023) Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol. Cell 83, 4047-4061.
< , R., Crozier, L., Pareri, A. U. et al. (https://doi.org/10.1016/j.molcel.2023.10.020>
8. 2014) Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol. Cell 55, 59-72.
< , L., Feringa, F. M., Shaltiel, I. A. et al. (https://doi.org/10.1016/j.molcel.2014.05.007>
9. 2022) Increasing cell size remodels the proteome and promotes senescence. Mol. Cell 82, 3255-3269.
< , M. C., Zatulovskiy, E., Swaffer, M. P. et al. (https://doi.org/10.1016/j.molcel.2022.07.017>
10. 2018) Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. Elife 7, e26947.
< , S., Ginzberg, M. B., Patel, N. et al. (https://doi.org/10.7554/eLife.26947>
11. 2023) Genome homeostasis defects drive enlarged cells into senescence. Mol. Cell 83, 4032-4046.
< , S., Estrada, M. E., Uliana, F. et al. (https://doi.org/10.1016/j.molcel.2023.10.018>
12. 2019) Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence. J. Cell Biol. 218, 2169-2184.
< , J. P., House, A. M., Grant, G. D. et al. (https://doi.org/10.1083/jcb.201902143>
13. 2023) The CDK4/6 inhibitor revolution – a game-changing era for breast cancer treatment. Nat. Rev. Clin. Oncol. 21, 89-105.
< , L., Loibl, S., Turner, N. C. (https://doi.org/10.1038/s41571-023-00840-4>
14. 2014) Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle 13, 2733-2743.
< , E., Cascales, H. S., Jaiswal, H. et al. (https://doi.org/10.4161/15384101.2015.945831>
15. 2019) Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176, 1083-1097.
< , G. E., Terry, R. L., Lengefeld, J. (https://doi.org/10.1016/j.cell.2019.01.018>
16. 2022) Senescence and cancer – role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619-636.
< , C. A., Wang, B., Demaria, M. (https://doi.org/10.1038/s41571-022-00668-4>
17. 2015) Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size. Nature 526, 268-272.
< , K. M., Turner, J. J., Kőivomägi, M. et al. (https://doi.org/10.1038/nature14908>
18. 2021) Cell size homeostasis is maintained by CDK4-dependent activation of p38 MAPK. Dev. Cell 56, 1756-1769.
< , C., Ginzberg, M. B., Webster, R. et al. (https://doi.org/10.1016/j.devcel.2021.04.030>
19. 2020) Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene 39, 5165-5176.
< , V., Gil, J. (https://doi.org/10.1038/s41388-020-1354-9>
20. 2022a) Pharmacological CDK4/6 inhibition reveals a p53-dependent senescent state with restricted toxicity. EMBO J. 41, e108946.
< , B., Varela-Eirin, M., Brandenburg, S. M. et al. (https://doi.org/10.15252/embj.2021108946>
21. 2022b) Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340-355.
< , L., Lankhorst, L., Bernards, R. (https://doi.org/10.1038/s41568-022-00450-9>
22. 2022) Delineation of proteome changes driven by cell size and growth rate. Front. Cell Dev. Biol. 10, 980721.
< , E., Lanz, M. C., Zhang, S. et al. (https://doi.org/10.3389/fcell.2022.980721>
23. 2020) On the molecular mechanisms regulating animal cell size homeostasis. Trends Genet. 36, 360-372.
< , E., Skotheim, J. M. (https://doi.org/10.1016/j.tig.2020.01.011>
24. 2020) Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science 369, 466-471.
< , E., Zhang, S., Berenson, D. F. et al. (https://doi.org/10.1126/science.aaz6213>
25. 2023) Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity. Nat. Commun. 14, 7847.
< , M., Kim, S., Yang, H. W. (https://doi.org/10.1038/s41467-023-43716-y>