Fol. Biol. 2023, 69, 173-180
https://doi.org/10.14712/fb2023069050173
Early-Onset Neonatal Sepsis: Inflammatory Biomarkers and MicroRNA as Potential Diagnostic Tools in Preterm Newborns
References
1. 2008) Endothelium in health and disease. Pharmacol. Rep. 60, 139-143.
, W. C. (
2. 2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.
< , D. P. (https://doi.org/10.1016/j.cell.2009.01.002>
3. 2015) Reappraisal of guidelines for management of neonates with suspected early-onset sepsis. J. Pediatr. 166, 1070-1074.
< , W. E., Wynn, J. L., Polin, R. A. (https://doi.org/10.1016/j.jpeds.2014.12.023>
4. 2016) Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1725-1774.
2015 Child Mortality Collaborators (
5. 2005) Active participation of endothelial cells in inflammation. J. Leukoc. Biol. 77, 487-495.
< , J. M., Deem, T. L. (https://doi.org/10.1189/jlb.0904554>
6. 2022) Diagnosis of neonatal sepsis: the role of inflammatory markers. Front. Pediatr. 10, 840288.
< , J., Resch, E., Resch, B. (https://doi.org/10.3389/fped.2022.840288>
7. 2014) Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks’ gestation. Pediatrics 133, 30-36.
< , G. J., Puopolo, K. M., Wi, S. et al. (https://doi.org/10.1542/peds.2013-1689>
8. 2003) Plasma nitrite/nitrate and endothelin-1 concentrations in neonatal sepsis. Acta Paediatr. 92, 582-587.
< , J., Gómez, L., Rodríguez-Miguélez, J. M. et al. (https://doi.org/10.1111/j.1651-2227.2003.tb02511.x>
9. 2016) Early-onset sepsis and antibiotic exposure in term infants: a nationwide population-based study in Norway. Pediatr. Infect. Dis. J. 35, 1-6.
< , J. W., Stensvold, H. J., Bergseng, H. et al. (https://doi.org/10.1097/INF.0000000000000906>
10. 2021) The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochem. Biophys. Rep. 26, 100988.
, E., Elrazek Midan, D. A., Ellaban, R. et al. (
11. 2022) Circulating microRNA profiling is altered in the acute respiratory distress syndrome related to SARS-CoV-2 infection. Sci. Rep. 12, 6929.
< , N., Du, J., Marin-Corral, J. et al. (https://doi.org/10.1038/s41598-022-10738-3>
12. 2018) Knockdown of long non-coding RNA MEG3 protects H9c2 cells from hypoxia-induced injury by targeting microRNA-183. J. Cell. Biochem. 119, 1429-1440.
< , L., Xu, H., Chang, H. et al. (https://doi.org/10.1002/jcb.26304>
13. 2010) Systemic inflammatory response syndrome (SIRS) definition and correlation with early-onset bacterial infection of the newborn. Arch. Dis. Child. Fetal Neonatal Ed. 95, F151.
< , N., Müller, W., Resch, B. (https://doi.org/10.1136/adc.2009.161638>
14. 2013) Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128, 2026-2038.
< , F., Yang, X., Hoelscher, M. et al. (https://doi.org/10.1161/CIRCULATIONAHA.113.001720>
15. 2015) Upregulation of microRNA335 and microRNA584 contributes to the pathogenesis of severe preeclampsia through downregulation of endothelial nitric oxide synthase. Mol. Med. Rep. 12, 5383-5390.
< , F., Li, J., Wu, G. et al. (https://doi.org/10.3892/mmr.2015.4018>
16. 2022) MicroRNA as an early biomarker of neonatal sepsis. Front. Pediatr. 10, 854324.
< , M., Bohosova, J., Stanikova, A. et al. (https://doi.org/10.3389/fped.2022.854324>
17. 2018) Culture-negative early-onset neonatal sepsis – at the crossroad between efficient sepsis care and antimicrobial stewardship. Front. Pediatr. 6, 285.
< , C., Kornelisse, R. F., Buonocore, G. et al. (https://doi.org/10.3389/fped.2018.00285>
18. 2019) miR-382-3p suppressed IL-1β induced inflammatory response of chondrocytes via the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43. J. Cell. Physiol. 234, 23160-23168.
< , J., Fu, Y., Zhuang, Y. et al. (https://doi.org/10.1002/jcp.28882>
19. 2023) Sleep deprivation promotes endothelial inflammation and atherogenesis by reducing exosomal miR-182-5p. Arterioscler. Thromb. Vasc. Biol. 43, 995-1014.
< , X., Cao, Y., Xu, X. et al. (https://doi.org/10.1161/ATVBAHA.123.319026>
20. 2018) MicroRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. Biomed. Pharmacother. 108, 271-279.
< , Y., Ke, J., Peng, C. et al. (https://doi.org/10.1016/j.biopha.2018.08.064>
21. 2010) MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J. Immunol. 185, 7244-7251.
< , X., Zhan, Z., Xu, L. et al. (https://doi.org/10.4049/jimmunol.1001573>
22. 2011) Gestational age patterns of fetal and neonatal mortality in Europe: results from the Euro-Peristat project. PloS One 6, e24727.
< , A. D., Buitendijk, S. E., Szamotulska, K. et al. (https://doi.org/10.1371/journal.pone.0024727>
23. 2013) In search of biomarkers for diagnosing and managing neonatal sepsis: the role of angiopoietins. J. Matern. Fetal Neonatal Med. 26 (Suppl. 2), 24-26.
< , M., Cibecchini, F., Noto, A. et al. (https://doi.org/10.3109/14767058.2013.830411>
24. NICE (2021) Neonatal infection: antibiotics for prevention and treatment. NICE guideline (NG195).
25. 2019) Plasma miR-1290 is a novel and specific biomarker for early diagnosis of necrotizing enterocolitis-biomarker discovery with prospective cohort evaluation. J. Pediatr. 205, 83-90.e10.
< , P. C., Chan, K. Y. Y., Yuen, T. P. et al. (https://doi.org/10.1016/j.jpeds.2018.09.031>
26. 2011) Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers 16 (Suppl. 1), S11-S21.
< , P., Jennewein, C., Zacharowski, K. (https://doi.org/10.3109/1354750X.2011.587893>
27. 2017) MicroRNA signature of human microvascular endothelium infected with Rickettsia rickettsii. Int. J. Mol. Sci. 18, E1471.
< , A., Narra, H. P., Patel, J. et al. (https://doi.org/10.3390/ijms18071471>
28. 2023) miR-369-3p modulates intestinal inflammatory response via BRCC3/NLRP3 inflammasome axis. Cells 12, 2184.
< , V., Piccinno, E., Valentini, A. M. et al. (https://doi.org/10.3390/cells12172184>
29. 2015) Risks of antibiotic exposures early in life on the developing microbiome. PLoS Pathog. 11, e1004903.
< , A., Blaser, M. J. (https://doi.org/10.1371/journal.ppat.1004903>
30. 2020) Spontaneous delivery is associated with increased endothelial activity in cord blood compared to elective Caesarean section. Eur. J. Obstet. Gynecol. Reprod. Biol. 251, 229-234.
< , M., Vitkova, V., Jamrichova, L. et al. (https://doi.org/10.1016/j.ejogrb.2020.05.059>
31. 2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus. Med. Rev. 20, 1-26.
< , J., Gelderman, M. P. (https://doi.org/10.1016/j.tmrv.2005.08.001>
32. 2004) Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 125, 804-813.
< , J., Holada, K., Risitano, A. M. et al. (https://doi.org/10.1111/j.1365-2141.2004.04974.x>
33. 2014) Early-onset neonatal sepsis. Clin. Microbiol. Rev. 27, 21-47.
< , K. A., Anderson-Berry, A. L., Delair, S. F. et al. (https://doi.org/10.1128/CMR.00031-13>
34. 2011) Early onset neonatal sepsis: the burden of group B streprococcal and E. coli disease continues. Pediatrics 127, 817-826.
< , B. J., Hansen, N. I., Sanchez, P. J. et al. (https://doi.org/10.1542/peds.2010-2217>
35. 2021) Bacterial DNA detection in very preterm infants assessed for risk of early onset sepsis. J. Perinat. Med. 50, 356-362.
< , Z., Berka, I., Korcek, P. et al. (https://doi.org/10.1515/jpm-2021-0184>
36. 2015) miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat. Commun. 6, 8523.
< , S., Zhao, Q., He, C. et al. (https://doi.org/10.1038/ncomms9523>
37. 2012) MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J. Clin. Invest. 122, 1973-1990.
, X., Icli, B., Wara, A. K. et al. (
38. 2009) Burden of neonatal infections in developing countries: a review of evidence from community-based studies. Pediatr. Infect. Dis. J. 28 (Suppl. 1), S3-S9.
< , D., Zaidi, A. K. (https://doi.org/10.1097/INF.0b013e3181958755>
39. 2010) Long-term trends in the epidemiology of neonatal sepsis and antibiotic susceptibility of causative agents. Neonatology 97, 22-28.
< , A., Gerards, L. J., Verboon-Maciolek, M. A. et al. (https://doi.org/10.1159/000226604>
40. Vitkova, V., Panek, M., Janec, P. et al. (2018) Endothelial microvesicles and soluble markers of endothelial injury in critically ill newborns. Mediators Inflamm. 2018, 1975056.
<https://doi.org/10.1155/2018/1975056>
41. 2018) Endothelial cell-derived microvesicles: potential mediators and biomarkers of pathologic processes. Biomark. Med. 12, 161-175.
< , V., Zivny, J., Janota, J. (https://doi.org/10.2217/bmm-2017-0182>
42. 2018) Plasma miR-136 can be used to screen patients with knee osteoarthritis from healthy controls by targeting IL-17. Exp. Ther. Med. 16, 3419-3424.
, L., Zhao, Q., Niu, G. et al. (
43. 2015) miR-223 inhibits lipid deposition and inflammation by suppressing toll-like receptor 4 signaling in macrophages. Int. J. Mol. Sci. 16, 24965-24982.
< , J., Bai, X., Song, Q. et al. (https://doi.org/10.3390/ijms161024965>
44. 2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 394, 184-188.
< , J. F., Yu, M. L., Yu, G. et al. (https://doi.org/10.1016/j.bbrc.2010.02.145>
45. 2018) The evolving role of microRNAs in endothelial cell dysfunction in response to infection. Semin. Thromb. Hemost. 44, 216-223.
, R. L., Fitzpatrick, G. G., Kerrigan, S. W. (
46. 2014) Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med. 42, 2409-2417.
< , S. L., Fitzgerald, J. C., Balamuth, F. et al. (https://doi.org/10.1097/CCM.0000000000000509>
47. 2020) Vascular endothelial growth factor and soluble vascular endothelial growth factor receptor as novel biomarkers for poor outcomes in children with severe sepsis and septic shock. Pediatr. Emerg. Care 36, e715-e719.
< , J. E., Silverman, M., Norton, J. S. et al. (https://doi.org/10.1097/PEC.0000000000001638>
48. 2016) Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc. Natl. Acad. Sci. U. S. A. 113, E2627-E2635.
< , J. L., Wilson, C. S., Hawiger, J. et al. (https://doi.org/10.1073/pnas.1515793113>
49. 2003) Selecting an indicator set for monitoring and evaluating perinatal health in Europe: criteria, methods and results from the PERISTAT project. Eur. J. Obst. Gynecol. Reprod. Biol. 111 (Suppl. 1), S5-S14.
< , J. K. Wildman, G., Bréart, S. et al. (https://doi.org/10.1016/j.ejogrb.2003.09.002>
50. 2019) Inhibition of microRNA-183 expression resists human umbilical vascular endothelial cells injury by upregulating expression of IRS1. Drug Deliv. 26, 612-621.
< , Y., Zhan, Y., Liu, D. et al. (https://doi.org/10.1080/10717544.2019.1628117>
51. 2014) High expression levels of microRNA-629, microRNA-525-5p and microRNA- 516a-3p in paediatric systemic lupus erythematosus. Clin. Rheumatol. 33, 807-815.
< , J., Huang, X., Su, G. et al. (https://doi.org/10.1007/s10067-014-2583-5>