Fol. Biol. 2024, 70, 45-52
https://doi.org/10.14712/fb2024070010045
Taurine Improved Autism-Like Behaviours and Defective Neurogenesis of the Hippocampus in BTBR Mice through the PTEN/mTOR/AKT Signalling Pathway
References
1. , J. R., Szoko, N., Barnard, J. et al. (2019) Proteomic investigations of autism brain identify known and novel pathogenetic processes. Sci. Rep. 9, 13118.
<https://doi.org/10.1038/s41598-019-49533-y>
2. , S. M., Gu, X., Schiller, D. et al. (2021) Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 44, 793-807.
<https://doi.org/10.1016/j.tins.2021.08.005>
3. , M. R., Couch, A. C. M., Grant, S. et al. (2023) Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure. Mol. Psychiatry 28, 2136-2147.
<https://doi.org/10.1038/s41380-023-02020-3>
4. , C. J., Sgritta, M., Mays, J. et al. (2019) Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency. Nat. Med. 25, 1684-1690.
<https://doi.org/10.1038/s41591-019-0608-y>
5. , S. K. K., Kwok, J., Or, P. M. Y. et al. (2023) Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci. Rep. 13, 6763.
<https://doi.org/10.1038/s41598-023-33869-7>
6. , C., Bookheimer, S. Y., Murphy, D. G. (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 14, 1121-1134.
<https://doi.org/10.1016/S1474-4422(15)00050-2>
7. , C., Rocha-Rego, V., Johnston, P. et al. (2010) Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49, 44-56.
<https://doi.org/10.1016/j.neuroimage.2009.08.024>
8. , A. H., Osman, A. S., Hossny, A. et al. (2023) Dose-dependent effects of taurine against testicular damage in a streptozotocin-induced type 1 diabetes mellitus rat model. Int. J. Immunopathol. Pharmacol. 37, 3946320231172745.
<https://doi.org/10.1177/03946320231172745>
9. , S., Bury, L. A. D., Eum, J. et al. (2023) Autism-specific PTEN p.Ile135Leu variant and an autism genetic background combine to dysregulate cortical neurogenesis. Am. J. Hum. Genet. 110, 826-845.
<https://doi.org/10.1016/j.ajhg.2023.03.015>
10. , S. K., Dey, P., Sharma, A. et al. (2015) Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome. Biochem. Biophys. Res. Commun. 464, 1196-1201.
<https://doi.org/10.1016/j.bbrc.2015.07.103>
11. , J., Xiao, Z., Chen, L. et al. (2013) Maintenance of the self-renewal properties of neural progenitor cells cultured in three-dimensional collagen scaffolds by the REDD1-mTOR signal pathway. Biomaterials 34, 1921-1928.
<https://doi.org/10.1016/j.biomaterials.2012.11.063>
12. , F., Ma, N., Midorikawa, K. et al. (2018) Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro. Amino Acids 50, 1749-1758.
<https://doi.org/10.1007/s00726-018-2651-2>
13. , T., Yoshikawa, N., Ito, H. et al. (2015) Impact of taurine depletion on glucose control and insulin secretion in mice. J. Pharmacol. Sci. 129, 59-64.
<https://doi.org/10.1016/j.jphs.2015.08.007>
14. , X., Tang, Z., Zhang, F. et al. (2023) Dietary taurine supplementation counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicol. Environ. Saf. 253, 114705.
<https://doi.org/10.1016/j.ecoenv.2023.114705>
15. , Y. M., Choi, M. J. (2019) Relation of taurine intake during pregnancy and newborns’ growth. Adv. Exp. Med. Biol. 1155, 283-292.
<https://doi.org/10.1007/978-981-13-8023-5_27>
16. , T., Ito, M., Seki, T. et al. (2019) Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res. 1723, 146403.
<https://doi.org/10.1016/j.brainres.2019.146403>
17. , Y. R., Chen, M., Pandolfi, P. P. (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547-562.
<https://doi.org/10.1038/s41580-018-0015-0>
18. , C. L. K., Karunakaran, S., Atser, M. G. et al. (2023) Analysis of a genetic region affecting mouse body weight. Physiol. Genomics 55, 132-146.
<https://doi.org/10.1152/physiolgenomics.00137.2022>
19. , C., Liu, J., Gong, H. et al. (2022) Implication of hippocampal neurogenesis in autism spectrum disorder: pathogenesis and therapeutic implications. Curr. Neuropharmacol. 21, 2266-2282.
<https://doi.org/10.2174/1570159X21666221220155455>
20. , C., Bishop, S. L. (2015) Recent advances in autism research as reflected in DSM-5 criteria for autism spectrum disorder. Annu. Rev. Clin. Psychol. 11, 53-70.
<https://doi.org/10.1146/annurev-clinpsy-032814-112745>
21. , S. (2017) The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci. 186, 80-86.
<https://doi.org/10.1016/j.lfs.2017.08.008>
22. , E., Cohen, I., Gonzalez, M. et al. (2017) Is taurine a biomarker in autistic spectrum disorder? Adv. Exp. Med. Biol. 975 (Pt 1), 3-16.
<https://doi.org/10.1007/978-94-024-1079-2_1>
23. , G., Cruz, N. J., Kang, D. W. et al. (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600-1618, e1617.
<https://doi.org/10.1016/j.cell.2019.05.004>
24. , Y., Cho, J. H., Kim, H. et al. (2023) Association between taurine level in the hippocampus and major depressive disorder in young women: a proton magnetic resonance spectroscopy study at 7 Tesla. Biol. Psychiatry 95, 465-472.
<https://doi.org/10.1016/j.biopsych.2023.08.025>
25. , F., Mataga, N. (1987) Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier. Biophys. J. 51, 487-495.
<https://doi.org/10.1016/S0006-3495(87)83370-2>
26. , A. K., Frazier, T. W., 2nd, Eng, C. (2015) Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics 12, 609-619.
<https://doi.org/10.1007/s13311-015-0356-8>
27. , L., Richmond-Hacham, B., Vita, A. et al. (2023) Measuring anxiety-like behavior in a mouse model of mTBI: Assessment in standard and home cage assays. Front. Behav. Neurosci. 17, 1140724.
<https://doi.org/10.3389/fnbeh.2023.1140724>
28. , G., Ma, N., He, F. et al. (2020) Taurine attenuates carcinogenicity in ulcerative colitis-colorectal cancer mouse model. Oxid. Med. Cell. Longev. 2020, 7935917.
29. , Y., Wu, Y., Meng, X. et al. (2022) SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ. 29, 1395-1408.
<https://doi.org/10.1038/s41418-022-00928-x>
30. , L., Eng, C. (2018) 65 YEARS OF THE DOUBLE HELIX: one gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. Endocr. Relat. Cancer. 25, T121-T140.
<https://doi.org/10.1530/ERC-18-0162>
31. , Z., Bao, Y., Li, Y. et al. (2022) Impact of different diets on adult tri-spine horseshoe crab, tachypleus tridentatus. J. Ocean Univ. China 21, 541-548.
<https://doi.org/10.1007/s11802-022-5199-4>
