Fol. Biol. 2024, 70, 45-52

https://doi.org/10.14712/fb2024070010045

Taurine Improved Autism-Like Behaviours and Defective Neurogenesis of the Hippocampus in BTBR Mice through the PTEN/mTOR/AKT Signalling Pathway

Huang Xiaoyan, Yang Zhaoxi, Zhang Lingli, Chen Jinyuan, Qin Wen

Department of Child Health, Shenzhen Guangming Women and Child Healthcare Hospital, Shenzhen, China

Received November 2023
Accepted December 2023

References

1. Abraham, J. R., Szoko, N., Barnard, J. et al. (2019) Proteomic investigations of autism brain identify known and novel pathogenetic processes. Sci. Rep. 9, 13118. <https://doi.org/10.1038/s41598-019-49533-y>
2. Banker, S. M., Gu, X., Schiller, D. et al. (2021) Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 44, 793-807. <https://doi.org/10.1016/j.tins.2021.08.005>
3. Bruce, M. R., Couch, A. C. M., Grant, S. et al. (2023) Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure. Mol. Psychiatry 28, 2136-2147. <https://doi.org/10.1038/s41380-023-02020-3>
4. Chen, C. J., Sgritta, M., Mays, J. et al. (2019) Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency. Nat. Med. 25, 1684-1690. <https://doi.org/10.1038/s41591-019-0608-y>
5. Cheung, S. K. K., Kwok, J., Or, P. M. Y. et al. (2023) Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci. Rep. 13, 6763. <https://doi.org/10.1038/s41598-023-33869-7>
6. Ecker, C., Bookheimer, S. Y., Murphy, D. G. (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 14, 1121-1134. <https://doi.org/10.1016/S1474-4422(15)00050-2>
7. Ecker, C., Rocha-Rego, V., Johnston, P. et al. (2010) Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49, 44-56. <https://doi.org/10.1016/j.neuroimage.2009.08.024>
8. ElBanna, A. H., Osman, A. S., Hossny, A. et al. (2023) Dose-dependent effects of taurine against testicular damage in a streptozotocin-induced type 1 diabetes mellitus rat model. Int. J. Immunopathol. Pharmacol. 37, 3946320231172745. <https://doi.org/10.1177/03946320231172745>
9. Fu, S., Bury, L. A. D., Eum, J. et al. (2023) Autism-specific PTEN p.Ile135Leu variant and an autism genetic background combine to dysregulate cortical neurogenesis. Am. J. Hum. Genet. 110, 826-845. <https://doi.org/10.1016/j.ajhg.2023.03.015>
10. Godavarthi, S. K., Dey, P., Sharma, A. et al. (2015) Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome. Biochem. Biophys. Res. Commun. 464, 1196-1201. <https://doi.org/10.1016/j.bbrc.2015.07.103>
11. Han, J., Xiao, Z., Chen, L. et al. (2013) Maintenance of the self-renewal properties of neural progenitor cells cultured in three-dimensional collagen scaffolds by the REDD1-mTOR signal pathway. Biomaterials 34, 1921-1928. <https://doi.org/10.1016/j.biomaterials.2012.11.063>
12. He, F., Ma, N., Midorikawa, K. et al. (2018) Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro. Amino Acids 50, 1749-1758. <https://doi.org/10.1007/s00726-018-2651-2>
13. Ito, T., Yoshikawa, N., Ito, H. et al. (2015) Impact of taurine depletion on glucose control and insulin secretion in mice. J. Pharmacol. Sci. 129, 59-64. <https://doi.org/10.1016/j.jphs.2015.08.007>
14. Ji, X., Tang, Z., Zhang, F. et al. (2023) Dietary taurine supplementation counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicol. Environ. Saf. 253, 114705. <https://doi.org/10.1016/j.ecoenv.2023.114705>
15. Jung, Y. M., Choi, M. J. (2019) Relation of taurine intake during pregnancy and newborns’ growth. Adv. Exp. Med. Biol. 1155, 283-292. <https://doi.org/10.1007/978-981-13-8023-5_27>
16. Kinjo, T., Ito, M., Seki, T. et al. (2019) Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res. 1723, 146403. <https://doi.org/10.1016/j.brainres.2019.146403>
17. Lee, Y. R., Chen, M., Pandolfi, P. P. (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547-562. <https://doi.org/10.1038/s41580-018-0015-0>
18. Leung, C. L. K., Karunakaran, S., Atser, M. G. et al. (2023) Analysis of a genetic region affecting mouse body weight. Physiol. Genomics 55, 132-146. <https://doi.org/10.1152/physiolgenomics.00137.2022>
19. Liu, C., Liu, J., Gong, H. et al. (2022) Implication of hippocampal neurogenesis in autism spectrum disorder: pathogenesis and therapeutic implications. Curr. Neuropharmacol. 21, 2266-2282. <https://doi.org/10.2174/1570159X21666221220155455>
20. Lord, C., Bishop, S. L. (2015) Recent advances in autism research as reflected in DSM-5 criteria for autism spectrum disorder. Annu. Rev. Clin. Psychol. 11, 53-70. <https://doi.org/10.1146/annurev-clinpsy-032814-112745>
21. Murakami, S. (2017) The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci. 186, 80-86. <https://doi.org/10.1016/j.lfs.2017.08.008>
22. Park, E., Cohen, I., Gonzalez, M. et al. (2017) Is taurine a biomarker in autistic spectrum disorder? Adv. Exp. Med. Biol. 975 (Pt 1), 3-16. <https://doi.org/10.1007/978-94-024-1079-2_1>
23. Sharon, G., Cruz, N. J., Kang, D. W. et al. (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600-1618, e1617. <https://doi.org/10.1016/j.cell.2019.05.004>
24. Song, Y., Cho, J. H., Kim, H. et al. (2023) Association between taurine level in the hippocampus and major depressive disorder in young women: a proton magnetic resonance spectroscopy study at 7 Tesla. Biol. Psychiatry 95, 465-472. <https://doi.org/10.1016/j.biopsych.2023.08.025>
25. Tanaka, F., Mataga, N. (1987) Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier. Biophys. J. 51, 487-495. <https://doi.org/10.1016/S0006-3495(87)83370-2>
26. Tilot, A. K., Frazier, T. W., 2nd, Eng, C. (2015) Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics 12, 609-619. <https://doi.org/10.1007/s13311-015-0356-8>
27. Tseitlin, L., Richmond-Hacham, B., Vita, A. et al. (2023) Measuring anxiety-like behavior in a mouse model of mTBI: Assessment in standard and home cage assays. Front. Behav. Neurosci. 17, 1140724. <https://doi.org/10.3389/fnbeh.2023.1140724>
28. Wang, G., Ma, N., He, F. et al. (2020) Taurine attenuates carcinogenicity in ulcerative colitis-colorectal cancer mouse model. Oxid. Med. Cell. Longev. 2020, 7935917.
29. Yang, Y., Wu, Y., Meng, X. et al. (2022) SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ. 29, 1395-1408. <https://doi.org/10.1038/s41418-022-00928-x>
30. Yehia, L., Eng, C. (2018) 65 YEARS OF THE DOUBLE HELIX: one gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. Endocr. Relat. Cancer. 25, T121-T140. <https://doi.org/10.1530/ERC-18-0162>
31. Ying, Z., Bao, Y., Li, Y. et al. (2022) Impact of different diets on adult tri-spine horseshoe crab, tachypleus tridentatus. J. Ocean Univ. China 21, 541-548. <https://doi.org/10.1007/s11802-022-5199-4>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive