Fol. Biol. 2024, 70, 74-83

https://doi.org/10.14712/fb2024070010074

Reactive Oxygen Species Modulate Th17/Treg Balance in Chlamydia psittaci Pneumonia via NLRP3/IL-1β/Caspase-1 Pathway Differentiation

Rong Jiang, Haibo Zhou, Xianglong Kong, Zhiguo Zhou

Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China

Received December 2023
Accepted March 2024

References

1. Affandi, A. J., Silva-Cardoso, S. C., Garcia, S. et al. (2018) CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis. Eur. J. Immunol. 48, 522-531. <https://doi.org/10.1002/eji.201747195>
2. Bai, H., Cheng, J., Gao, X. et al. (2009) IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J. Immunol. 183, 5886-5895. <https://doi.org/10.4049/jimmunol.0901584>
3. Bai, X., Liu, P., Shen, H. et al. (2022) Water-extracted Lonicera japonica polysaccharide attenuates allergic rhinitis by regulating NLRP3-IL-17 signaling axis. Carbohydr. Polym. 297, 120053. <https://doi.org/10.1016/j.carbpol.2022.120053>
4. Braukmann, M., Sachse, K., Jacobsen, I. D. et al. (2012) Distinct intensity of host-pathogen interactions in Chlamydia psittaci- and Chlamydia abortus-infected chicken embryos. Infect. Immun. 80, 2976-2988. <https://doi.org/10.1128/IAI.00437-12>
5. Cai, H., Chen, S., Xu, S. et al. (2016) Deficiency of LIGHT signaling pathway exacerbates Chlamydia psittaci respiratory tract infection in mice. Microb. Pathog. 100, 250-256. <https://doi.org/10.1016/j.micpath.2016.10.006>
6. Chavez, M. D., Tse, H. M. (2021) Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front. Immunol. 12, 703972. <https://doi.org/10.3389/fimmu.2021.703972>
7. Chen, L., Huang, Q., Luo, Y. et al. (2023) MiR-184 targeting FOXO1 regulates host-cell oxidative stress induced by Chlamydia psittaci via the Wnt/β-catenin signaling pathway. Infect Immun. 91, e0033723. <https://doi.org/10.1128/iai.00337-23>
8. Cho, K. A., Suh, J. W., Lee, K. H. et al. (2012) IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int. Immunol. 24, 147-158. <https://doi.org/10.1093/intimm/dxr110>
9. Cui, L., Qu, G., Chen, Y. et al. (2021) Polymorphic membrane protein 20G: a promising diagnostic biomarker for specific detection of Chlamydia psittaci infection. Microb. Pathog. 155, 104882. <https://doi.org/10.1016/j.micpath.2021.104882>
10. Cui, Z., Meng, L. (2023) Psittacosis pneumonia: diagnosis, treatment and interhuman transmission. Int. J. Gen. Med. 16, 1-6. <https://doi.org/10.2147/IJGM.S396074>
11. Doulabi, H., Rastin, M., Shabahangh, H. et al. (2018) Analysis of Th22, Th17 and CD4+ cells co-producing IL-17/IL-22 at different stages of human colon cancer. Biomed. Pharmacother. 103, 1101-1106. <https://doi.org/10.1016/j.biopha.2018.04.147>
12. Duan, Z., Gao, Y., Liu, B. et al. (2022) The application value of metagenomic and whole-genome capture next-generation sequencing in the diagnosis and epidemiological analysis of psittacosis. Front. Cell. Infect. Microbiol. 12, 872899. <https://doi.org/10.3389/fcimb.2022.872899>
13. Garcimartin, A., Merino, J. J., Gonzalez, M. P. et al. (2014) Organic silicon protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide effects. BMC Complement. Altern. Med. 14, 384. <https://doi.org/10.1186/1472-6882-14-384>
14. Guan, M., Ma, H., Fan, X. et al. (2020) Dexamethasone alleviate allergic airway inflammation in mice by inhibiting the activation of NLRP3 inflammasome. Int. Immunopharmacol. 78, 106017. <https://doi.org/10.1016/j.intimp.2019.106017>
15. He, S., Wang, C., Huang, Y. et al. (2022) Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119324. <https://doi.org/10.1016/j.bbamcr.2022.119324>
16. Jin, W., Liang, R., Tian, X. et al. (2023) Clinical features of psittacosis in 46 Chinese patients. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 41, 545-548. <https://doi.org/10.1016/j.eimc.2022.05.012>
17. Kalmar, I., Berndt, A., Yin, L. et al. (2015) Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus. Vet. Immunol. Immunopathol. 164, 30-39. <https://doi.org/10.1016/j.vetimm.2014.12.014>
18. Kastner, J., Saluz, H. P., Hanel, F. (2015) Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int. J. Med. Microbiol. 305, 310-321. <https://doi.org/10.1016/j.ijmm.2014.12.022>
19. Khairnar, R. C., Parihar, N., Prabhavalkar, K. S. et al. (2022) Emerging targets signaling for inflammation in Parkinson’s disease drug discovery. Metab. Brain Dis. 37, 2143-2161. <https://doi.org/10.1007/s11011-022-00999-2>
20. Lai, R., Xian, D. Xiong, X. et al. (2018) Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep. 23, 130-135. <https://doi.org/10.1080/13510002.2018.1462027>
21. Lausen, M., Christiansen, G., Bouet Guldbaek Poulsen, T. et al. (2019) Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes Infect. 21, 73-84. <https://doi.org/10.1016/j.micinf.2018.10.007>
22. Leng, S., Xu, W., Wu, L. et al. (2023) NLRP3 disturbs Treg/Th17 cell balance to aggravate apical periodontitis. J. Dent. Res. 102, 656-666. <https://doi.org/10.1177/00220345231151692>
23. Li, J., Dong, X., Zhao, L. et al. (2016) Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection. J. Cell. Mol. Med. 20, 1339-1351. <https://doi.org/10.1111/jcmm.12821>
24. Li, Y., Gorelik, G., Strickland, F. M. et al. (2014) Oxidative stress, T cell DNA methylation, and lupus. Arthritis Rheumatol. 66, 1574-1582. <https://doi.org/10.1002/art.38427>
25. Li, Q., Li, X., Quan, H. et al. (2021) IL-10-/- enhances DCs immunity against Chlamydia psittaci infection via OX40L/NLRP3 and IDO/Treg pathways. Front. Immunol. 12, 645653. <https://doi.org/10.3389/fimmu.2021.645653>
26. Li, J., Wang, Q., Yang, R. et al. (2017) BMI-1 mediates estrogen-deficiency-induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation. J. Bone Miner. Res. 32, 962-973. <https://doi.org/10.1002/jbmr.3059>
27. Li, Y., Wang, C., Sun, Z. et al. (2019) Simultaneous intramuscular and intranasal administration of chitosan nanoparticles-adjuvanted chlamydia vaccine elicits elevated protective responses in the lung. Int. J. Nanomedicine 14, 8179-8193. <https://doi.org/10.2147/IJN.S218456>
28. Li, Z., Wang, Y., Zheng, K. et al. (2023) Tim-3 blockade enhances the clearance of Chlamydia psittaci in the lung by promoting a cell-mediated immune response. Int. Immunopharmacol. 116, 109780. <https://doi.org/10.1016/j.intimp.2023.109780>
29. Lopez Krol, A., Nehring, H. P., Krause, F. F. et al. (2022) Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 23, e54685. <https://doi.org/10.15252/embr.202254685>
30. Lu, M., Qin, X., Yao, J. et al. (2020) Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiol. (Oxf.) 230, e13537. <https://doi.org/10.1111/apha.13537>
31. Luo, Y., Sun, Z., Chen, Q. et al. (2023) TLR2 mediates autophagy through ERK signaling pathway in Chlamydia psittaci CPSIT_p7 protein-stimulated RAW264.7 cells. Microbiol. Immunol. 67, 469-479. <https://doi.org/10.1111/1348-0421.13096>
32. Martinez, F. O., Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13. <https://doi.org/10.12703/P6-13>
33. Ojeda Rodriguez, J. A., Modi, P., Brady, M. F. (2023) Psittacosis Pneumonia. In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing.
34. Radomski, N., Franzke, K., Matthiesen, S. et al. (2019) NK cell-mediated processing of chlamydia psittaci drives potent anti-bacterial Th1 immunity. Sci. Rep. 9, 4799. <https://doi.org/10.1038/s41598-019-41264-4>
35. Rajaram, K., Nelson, D. E. (2015) Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B. Infect. Immun. 83, 3164-3175. <https://doi.org/10.1128/IAI.00382-15>
36. Shi, H., Zhang, Z., Wang, X. et al. (2015) Inhibition of autophagy induces IL-1β release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress. Biochem. Biophys. Res. Commun. 463, 1071-1076. <https://doi.org/10.1016/j.bbrc.2015.06.060>
37. Tosic-Pajic, J., Seklic, D., Radenkovic, J. et al. (2017) Augmented oxidative stress in infertile women with persistent chlamydial infection. Reprod. Biol. 17, 120-125. <https://doi.org/10.1016/j.repbio.2017.03.001>
38. Wang, F., Liang, Q., Ma, Y. et al. (2022) Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway. Free Radic. Biol. Med. 182, 171-181. <https://doi.org/10.1016/j.freeradbiomed.2022.02.027>
39. Wu, X., Zhang, H., Qi, W. et al. (2018) Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9, 171. <https://doi.org/10.1038/s41419-017-0257-3>
40. Xu, Y., Shen, J., Ran, Z. (2020) Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 16, 3-17. <https://doi.org/10.1080/15548627.2019.1603547>
41. Yang, J., Yang, X., Zou, H. et al. (2016) Oxidative stress and Treg and Th17 dysfunction in systemic lupus erythematosus. Oxid. Med. Cell. Longev. 2016, 2526174.
42. Zhang, M., Johnson-Stephenson, T. K., Wang, W. et al. (2022) Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res. Ther. 13, 484. <https://doi.org/10.1186/s13287-022-03174-7>
43. Zhang, Z. T., Zhang, D. Y., Xie, K. et al. (2021) Luteolin activates Tregs to promote IL-10 expression and alleviating caspase-11-dependent pyroptosis in sepsis-induced lung injury. Int. Immunopharmacol. 99, 107914. <https://doi.org/10.1016/j.intimp.2021.107914>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive