Fol. Biol. 2024, 70, 74-83
https://doi.org/10.14712/fb2024070010074
Reactive Oxygen Species Modulate Th17/Treg Balance in Chlamydia psittaci Pneumonia via NLRP3/IL-1β/Caspase-1 Pathway Differentiation
References
1. 2018) CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis. Eur. J. Immunol. 48, 522-531.
< , A. J., Silva-Cardoso, S. C., Garcia, S. et al. (https://doi.org/10.1002/eji.201747195>
2. 2009) IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J. Immunol. 183, 5886-5895.
< , H., Cheng, J., Gao, X. et al. (https://doi.org/10.4049/jimmunol.0901584>
3. 2022) Water-extracted Lonicera japonica polysaccharide attenuates allergic rhinitis by regulating NLRP3-IL-17 signaling axis. Carbohydr. Polym. 297, 120053.
< , X., Liu, P., Shen, H. et al. (https://doi.org/10.1016/j.carbpol.2022.120053>
4. 2012) Distinct intensity of host-pathogen interactions in Chlamydia psittaci- and Chlamydia abortus-infected chicken embryos. Infect. Immun. 80, 2976-2988.
< , M., Sachse, K., Jacobsen, I. D. et al. (https://doi.org/10.1128/IAI.00437-12>
5. 2016) Deficiency of LIGHT signaling pathway exacerbates Chlamydia psittaci respiratory tract infection in mice. Microb. Pathog. 100, 250-256.
< , H., Chen, S., Xu, S. et al. (https://doi.org/10.1016/j.micpath.2016.10.006>
6. 2021) Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front. Immunol. 12, 703972.
< , M. D., Tse, H. M. (https://doi.org/10.3389/fimmu.2021.703972>
7. 2023) MiR-184 targeting FOXO1 regulates host-cell oxidative stress induced by Chlamydia psittaci via the Wnt/β-catenin signaling pathway. Infect Immun. 91, e0033723.
< , L., Huang, Q., Luo, Y. et al. (https://doi.org/10.1128/iai.00337-23>
8. 2012) IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int. Immunol. 24, 147-158.
< , K. A., Suh, J. W., Lee, K. H. et al. (https://doi.org/10.1093/intimm/dxr110>
9. 2021) Polymorphic membrane protein 20G: a promising diagnostic biomarker for specific detection of Chlamydia psittaci infection. Microb. Pathog. 155, 104882.
< , L., Qu, G., Chen, Y. et al. (https://doi.org/10.1016/j.micpath.2021.104882>
10. 2023) Psittacosis pneumonia: diagnosis, treatment and interhuman transmission. Int. J. Gen. Med. 16, 1-6.
< , Z., Meng, L. (https://doi.org/10.2147/IJGM.S396074>
11. 2018) Analysis of Th22, Th17 and CD4+ cells co-producing IL-17/IL-22 at different stages of human colon cancer. Biomed. Pharmacother. 103, 1101-1106.
< , H., Rastin, M., Shabahangh, H. et al. (https://doi.org/10.1016/j.biopha.2018.04.147>
12. 2022) The application value of metagenomic and whole-genome capture next-generation sequencing in the diagnosis and epidemiological analysis of psittacosis. Front. Cell. Infect. Microbiol. 12, 872899.
< , Z., Gao, Y., Liu, B. et al. (https://doi.org/10.3389/fcimb.2022.872899>
13. 2014) Organic silicon protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide effects. BMC Complement. Altern. Med. 14, 384.
< , A., Merino, J. J., Gonzalez, M. P. et al. (https://doi.org/10.1186/1472-6882-14-384>
14. 2020) Dexamethasone alleviate allergic airway inflammation in mice by inhibiting the activation of NLRP3 inflammasome. Int. Immunopharmacol. 78, 106017.
< , M., Ma, H., Fan, X. et al. (https://doi.org/10.1016/j.intimp.2019.106017>
15. 2022) Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119324.
< , S., Wang, C., Huang, Y. et al. (https://doi.org/10.1016/j.bbamcr.2022.119324>
16. 2023) Clinical features of psittacosis in 46 Chinese patients. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 41, 545-548.
< , W., Liang, R., Tian, X. et al. (https://doi.org/10.1016/j.eimc.2022.05.012>
17. 2015) Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus. Vet. Immunol. Immunopathol. 164, 30-39.
< , I., Berndt, A., Yin, L. et al. (https://doi.org/10.1016/j.vetimm.2014.12.014>
18. 2015) Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int. J. Med. Microbiol. 305, 310-321.
< , J., Saluz, H. P., Hanel, F. (https://doi.org/10.1016/j.ijmm.2014.12.022>
19. 2022) Emerging targets signaling for inflammation in Parkinson’s disease drug discovery. Metab. Brain Dis. 37, 2143-2161.
< , R. C., Parihar, N., Prabhavalkar, K. S. et al. (https://doi.org/10.1007/s11011-022-00999-2>
20. 2018) Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep. 23, 130-135.
< , R., Xian, D. Xiong, X. et al. (https://doi.org/10.1080/13510002.2018.1462027>
21. 2019) Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes Infect. 21, 73-84.
< , M., Christiansen, G., Bouet Guldbaek Poulsen, T. et al. (https://doi.org/10.1016/j.micinf.2018.10.007>
22. 2023) NLRP3 disturbs Treg/Th17 cell balance to aggravate apical periodontitis. J. Dent. Res. 102, 656-666.
< , S., Xu, W., Wu, L. et al. (https://doi.org/10.1177/00220345231151692>
23. 2016) Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection. J. Cell. Mol. Med. 20, 1339-1351.
< , J., Dong, X., Zhao, L. et al. (https://doi.org/10.1111/jcmm.12821>
24. 2014) Oxidative stress, T cell DNA methylation, and lupus. Arthritis Rheumatol. 66, 1574-1582.
< , Y., Gorelik, G., Strickland, F. M. et al. (https://doi.org/10.1002/art.38427>
25. 2021) IL-10-/- enhances DCs immunity against Chlamydia psittaci infection via OX40L/NLRP3 and IDO/Treg pathways. Front. Immunol. 12, 645653.
< , Q., Li, X., Quan, H. et al. (https://doi.org/10.3389/fimmu.2021.645653>
26. 2017) BMI-1 mediates estrogen-deficiency-induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation. J. Bone Miner. Res. 32, 962-973.
< , J., Wang, Q., Yang, R. et al. (https://doi.org/10.1002/jbmr.3059>
27. 2019) Simultaneous intramuscular and intranasal administration of chitosan nanoparticles-adjuvanted chlamydia vaccine elicits elevated protective responses in the lung. Int. J. Nanomedicine 14, 8179-8193.
< , Y., Wang, C., Sun, Z. et al. (https://doi.org/10.2147/IJN.S218456>
28. 2023) Tim-3 blockade enhances the clearance of Chlamydia psittaci in the lung by promoting a cell-mediated immune response. Int. Immunopharmacol. 116, 109780.
< , Z., Wang, Y., Zheng, K. et al. (https://doi.org/10.1016/j.intimp.2023.109780>
29. 2022) Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 23, e54685.
< Krol, A., Nehring, H. P., Krause, F. F. et al. (https://doi.org/10.15252/embr.202254685>
30. 2020) Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiol. (Oxf.) 230, e13537.
< , M., Qin, X., Yao, J. et al. (https://doi.org/10.1111/apha.13537>
31. 2023) TLR2 mediates autophagy through ERK signaling pathway in Chlamydia psittaci CPSIT_p7 protein-stimulated RAW264.7 cells. Microbiol. Immunol. 67, 469-479.
< , Y., Sun, Z., Chen, Q. et al. (https://doi.org/10.1111/1348-0421.13096>
32. 2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13.
< , F. O., Gordon, S. (https://doi.org/10.12703/P6-13>
33. Ojeda Rodriguez, J. A., Modi, P., Brady, M. F. (2023) Psittacosis Pneumonia. In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing.
34. 2019) NK cell-mediated processing of chlamydia psittaci drives potent anti-bacterial Th1 immunity. Sci. Rep. 9, 4799.
< , N., Franzke, K., Matthiesen, S. et al. (https://doi.org/10.1038/s41598-019-41264-4>
35. 2015) Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B. Infect. Immun. 83, 3164-3175.
< , K., Nelson, D. E. (https://doi.org/10.1128/IAI.00382-15>
36. 2015) Inhibition of autophagy induces IL-1β release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress. Biochem. Biophys. Res. Commun. 463, 1071-1076.
< , H., Zhang, Z., Wang, X. et al. (https://doi.org/10.1016/j.bbrc.2015.06.060>
37. 2017) Augmented oxidative stress in infertile women with persistent chlamydial infection. Reprod. Biol. 17, 120-125.
< , J., Seklic, D., Radenkovic, J. et al. (https://doi.org/10.1016/j.repbio.2017.03.001>
38. 2022) Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway. Free Radic. Biol. Med. 182, 171-181.
< , F., Liang, Q., Ma, Y. et al. (https://doi.org/10.1016/j.freeradbiomed.2022.02.027>
39. 2018) Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9, 171.
< , X., Zhang, H., Qi, W. et al. (https://doi.org/10.1038/s41419-017-0257-3>
40. 2020) Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 16, 3-17.
< , Y., Shen, J., Ran, Z. (https://doi.org/10.1080/15548627.2019.1603547>
41. 2016) Oxidative stress and Treg and Th17 dysfunction in systemic lupus erythematosus. Oxid. Med. Cell. Longev. 2016, 2526174.
, J., Yang, X., Zou, H. et al. (
42. 2022) Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res. Ther. 13, 484.
< , M., Johnson-Stephenson, T. K., Wang, W. et al. (https://doi.org/10.1186/s13287-022-03174-7>
43. 2021) Luteolin activates Tregs to promote IL-10 expression and alleviating caspase-11-dependent pyroptosis in sepsis-induced lung injury. Int. Immunopharmacol. 99, 107914.
< , Z. T., Zhang, D. Y., Xie, K. et al. (https://doi.org/10.1016/j.intimp.2021.107914>