Fol. Biol. 2024, 70, 85-94
https://doi.org/10.14712/fb2024070020085
Integrating Lysosomal Genes and Immune Infiltration for Multiple Myeloma Subtyping and Prognostic Stratification
References
1. , M. E., Hsing, A. W., McGuire, V. et al. (2019) Presentation and survival of multiple myeloma patients in Ghana: a review of 169 cases. Ghana Med. J. 53, 52-58.
<https://doi.org/10.4314/gmj.v53i1.8>
2. , R. K., Kimmelman, A. C., Debnath, J. (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167-1181.
<https://doi.org/10.1158/2159-8290.CD-19-0292>
3. Carlson, M., Falcon, S., Pages, H. et al. (2016) hgu133plus2. db: Affymetrix Human Genome U133 Plus 2.0 Array annotation data (chip hgu133plus2). R package version 3.
4. , A. J., Green, D. J., Kwok, M. et al. (2022) Diagnosis and management of multiple myeloma: a review. JAMA 327, 464-477.
<https://doi.org/10.1001/jama.2022.0003>
5. , S., Meltzer, P. S. (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846-1847.
<https://doi.org/10.1093/bioinformatics/btm254>
6. , X., Liu, B., Jiang, Q. et al. (2024) CREBH promotes autophagy to ameliorate NASH by regulating Coro1a. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 166914.
<https://doi.org/10.1016/j.bbadis.2023.166914>
7. , R., Abouzaid, S., Bonafede, M. et al. (2017) Trends in overall survival and costs of multiple myeloma, 2000–2014. Leukemia 31, 1915-1921.
<https://doi.org/10.1038/leu.2016.380>
8. , K. A., Seal, R. L., Tweedie, S. et al. (2016) A review of the new HGNC gene family resource. Hum. Genomics 10, 1-9.
<https://doi.org/10.1186/s40246-016-0062-6>
9. , I., Huang, Y., Zhan, F. et al. (2006) Prognostic value of cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations. Leukemia 20, 1288-1290.
<https://doi.org/10.1038/sj.leu.2404253>
10. , M., Nickel, K., Högner, M. et al. (2021) Multiple myeloma: molecular pathogenesis and disease evolution. Oncol. Res. Treat. 44, 672-681.
<https://doi.org/10.1159/000520312>
11. , C., Qu, P., Van Rhee, F. et al. (2014) Five gene probes carry most of the discriminatory power of the 70-gene risk model in multiple myeloma. Leukemia 28, 2410-2413.
<https://doi.org/10.1038/leu.2014.232>
12. , Y., Huang, J., Zhang, P. et al. (2021) Integrated analysis of hub gene expression in multiple myeloma. J. BUON 26, 2040-2052.
13. , Y., Yang, F., Zhang, W. et al. (2023) A novel lysosome-related gene signature coupled with gleason score for prognosis prediction in prostate cancer. Front. Genet. 14, 1135365.
<https://doi.org/10.3389/fgene.2023.1135365>
14. , Y., Zhou, J., Hou, D. et al. (2019) Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-β1/Smad signaling pathway. J. Pathol. 249, 26-38.
<https://doi.org/10.1002/path.5278>
15. , A., Birger, C., Thorvaldsdóttir, H. et al. (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417-425.
<https://doi.org/10.1016/j.cels.2015.12.004>
16. , K. K., Mishra, S. R., Behera, B. P. et al. (2021) The lysosome as an imperative regulator of autophagy and cell death. Cell. Mol. Life Sci. 78, 7435-7449.
<https://doi.org/10.1007/s00018-021-03988-3>
17. , A., Hideshima, T., Anderson, K. C. (2010) Multiple myeloma: biology of the disease. Blood Rev. 24, S5-S11.
<https://doi.org/10.1016/S0268-960X(10)70003-5>
18. , L., Kochenderfer, J. N. (2021) CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 18, 71-84.
<https://doi.org/10.1038/s41571-020-0427-6>
19. , Y., Takano, S., Sogawa, K. et al. (2022) Prosaposin, tumor-secreted protein, promotes pancreatic cancer progression by decreasing tumor-infiltrating lymphocytes. Cancer Sci. 113, 2548-2559.
<https://doi.org/10.1111/cas.15444>
20. , P., Kumar, S. K., San Miguel, J. et al. (2021) Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncol. 22, e105-e118.
<https://doi.org/10.1016/S1470-2045(20)30756-7>
21. , T., Zillinger, T., Andryka, K. et al. (2020) Immune sensing of synthetic, bacterial, and protozoan RNA by toll-like receptor 8 requires coordinated processing by RNase T2 and RNase 2. Immunity 52, 591-605.e596.
<https://doi.org/10.1016/j.immuni.2020.03.009>
22. , S. A., Barsouk, A., Barsouk, A. et al. (2021) Epidemiology, staging, and management of multiple myeloma. Med. Sci. (Basel) 9, 3.
23. , Y., Meng, Y., Zhai, Z. et al. (2021) Identification of a three-gene-based prognostic model in multiple myeloma using bioinformatics analysis. PeerJ 9, e11320.
<https://doi.org/10.7717/peerj.11320>
24. , J., Guardia, C. M., Keren-Kaplan, T. et al. (2016) Mechanisms and functions of lysosome positioning. J. Cell Sci. 129, 4329-4339.
<https://doi.org/10.1242/jcs.196287>
25. , A. A., Karaesmen, E., Morgan, M. et al. (2019) gwasurvivr: an R package for genome-wide survival analysis. Bioinformatics 35, 1968-1970.
<https://doi.org/10.1093/bioinformatics/bty920>
26. , J., Pintado-Berninches, L., Boukich, I. et al. (2022) A prognostic six-gene expression risk-score derived from proteomic profiling of the metastatic colorectal cancer secretome. J. Pathol. Clin. Res. 8, 495-508.
<https://doi.org/10.1002/cjp2.294>
27. , S., Gannage, M., Münz, C. (2013) Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin. Cancer Biol. 23, 391-396.
<https://doi.org/10.1016/j.semcancer.2013.03.001>
28. , U. A., Mailankody, S. (2020) Emerging immunotherapies in multiple myeloma. BMJ 370, m3176.
<https://doi.org/10.1136/bmj.m3176>
29. , G., Ojha, R., Noguera-Ortega, E. et al. (2022) PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight 7, e133225.
30. , H. M., Mizushima, N. (2014) At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39, 61-71.
<https://doi.org/10.1016/j.tibs.2013.12.001>
31. , B., Huang, Q. Q., Birkett, R. et al. (2017) SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy 13, 285-301.
<https://doi.org/10.1080/15548627.2016.1261238>
32. , T., Yang, Z. Y., Wang, D. et al. (2020) The role of lysosomes in cancer development and progression. Cell Biosci. 10, 131.
<https://doi.org/10.1186/s13578-020-00489-x>
33. , N., Lopez, G., Do, J. et al. (2020) Pro-cathepsin D, prosaposin, and progranulin: lysosomal networks in Parkinsonism. Trends Mol. Med. 26, 913-923.
<https://doi.org/10.1016/j.molmed.2020.07.004>
34. , S. I., Overkleeft, H. S. (2014) Endo-lysosomal proteases in antigen presentation. Curr. Opin. Chem. Biol. 23, 8-15.
<https://doi.org/10.1016/j.cbpa.2014.08.011>
35. , S., Su, W., Zhong, C. et al. (2020) An eight-circRNA assessment model for predicting biochemical recurrence in prostate cancer. Front. Cell Dev. Biol. 8, 599494.
<https://doi.org/10.3389/fcell.2020.599494>
36. , T., Qin, Y., Ye, Z. et al. (2023) A new glance at autophagolysosomal-dependent or -independent function of transcriptional factor EB in human cancer. Acta Pharmacol. Sin. 44, 1536-1548.
<https://doi.org/10.1038/s41401-023-01078-7>
37. , M. D., Hayes, D. N. (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572-1573.
<https://doi.org/10.1093/bioinformatics/btq170>
38. , K., Venida, A., Yano, J. et al. (2020) Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100-105.
<https://doi.org/10.1038/s41586-020-2229-5>
39. , K., Shahmoradgoli, M., Martínez, E. et al. (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612.
<https://doi.org/10.1038/ncomms3612>
40. , G., Wang, L.-G., Han, Y. et al. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.
<https://doi.org/10.1089/omi.2011.0118>
41. , F. X., Wang, X. T., Ye, Z. Z. et al. (2020a) Construction of a prognosis‑associated long noncoding RNA‑mRNA network for multiple myeloma based on microarray and bioinformatics analysis. Mol. Med. Rep. 21, 999-1010.
42. , S. Y., Yao, R. Q., Li, Y. X. et al. (2020b) Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis. 11, 817.
<https://doi.org/10.1038/s41419-020-03032-5>
