Fol. Biol. 2024, 70, 113-122
https://doi.org/10.14712/fb2024070020113
TET3 Protein Represses Proliferation of the MG-63 Human Osteosarcoma Cell Line by Regulating DNA Demethylation: an Epigenetic Study
References
1. 2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776-790.
< , S. S., Kempf-Bielack, B., Delling, G. N. et al. (https://doi.org/10.1200/JCO.2002.20.3.776>
2. 2010) Bone cancer. J. Natl. Compr. Canc. Netw. 8, 688-712.
< , J. S., Adkins, D. R., Benjamin, R. S. et al. (https://doi.org/10.6004/jnccn.2010.0051>
3. 2020) Epigenetic downregulation of TET3 reduces genome‐wide 5hmC levels and promotes glioblastoma tumourigenesis. Int. J. Cancer 146, 373-387.
< , A., Tejedor, J. R., García, M. G. et al. (https://doi.org/10.1002/ijc.32520>
4. 2015) Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain 156, 1124-1144.
< , D., Kong, L.-Y., Cai, J. et al. (https://doi.org/10.1097/j.pain.0000000000000158>
5. 2011a) Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 10, 2662-2668.
< , J. U., Su, Y., Zhong, C. et al. (https://doi.org/10.4161/cc.10.16.17093>
6. 2011b) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423-434.
< , J. U., Su, Y., Zhong, C. et al. (https://doi.org/10.1016/j.cell.2011.03.022>
7. 2017) Epigenomic landscape of 5-hydroxymethylcytosine reveals its transcriptional regulation of lncRNAs in colorectal cancer. Br. J. Cancer 116, 658-668.
< , H., Shu, M., He, L. et al. (https://doi.org/10.1038/bjc.2016.457>
8. 2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303.
< , S., Shen, L., Dai, Q. et al. (https://doi.org/10.1126/science.1210597>
9. 2003) Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 21, 2011-2018.
< , L., Zoubek, A., Pötschger, U. et al. (https://doi.org/10.1200/JCO.2003.08.132>
10. 2022) Integrated analysis revealing the role of TET3-mediated MUC13 promoter hypomethylation in hepatocellular carcinogenesis. Epigenomics 14, 1579-1591.
< , R., Zhang, H., Jia, Y. et al. (https://doi.org/10.2217/epi-2022-0395>
11. 2020) Somatic mutation and loss of expression of a candidate tumour suppressor gene TET3 in gastric and colorectal cancers. Pathol. Res. Pract. 216, 152759.
< , H. Y., An, C. H., Choi, E. J. et al. (https://doi.org/10.1016/j.prp.2019.152759>
12. 2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11-24.
< , K., Reavie, L., Shih, A. et al. (https://doi.org/10.1016/j.ccr.2011.06.001>
13. 2022) TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways. Leukemia 36, 416-425.
< , A. J., Bamezai, S., Ammer, T. et al. (https://doi.org/10.1038/s41375-021-01390-3>
14. 2022) Regional gain and global loss of 5-hydroxymethylcytosine coexist in genitourinary cancers and regulate different oncogenic pathways. Clin. Epigenetics 14, 1-16.
, J., Shi, Y., Tan, Y. et al. (
15. 2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733-750.
< , K. D., Helin, K. (https://doi.org/10.1101/gad.276568.115>
16. 2023) USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: a system biology analysis. Cancers (Basel) 15, 1371.
< , Y., Song, Z., Rieser, J. et al. (https://doi.org/10.3390/cancers15051371>
17. 2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935.
< , M., Koh, K. P., Shen, Y. et al. (https://doi.org/10.1126/science.1170116>
18. 2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98-W102.
< , Z., Li, C., Kang, B. et al. (https://doi.org/10.1093/nar/gkx247>
19. 2018) Epigenetic reprogramming strategies to reverse global loss of 5-hydroxymethylcytosine, a prognostic factor for poor survival in high-grade serous ovarian cancer. Clin. Cancer Res. 24, 1389-1401.
< , D. W., Getchell, C. R., McCarthy, E. T. et al. (https://doi.org/10.1158/1078-0432.CCR-17-1958>
20. 2016) TET3 and BRCA1 corepress EZH2 to inhibit the aggressive behavior of breast cancer cells. Int. J. Clin. Exp. Med. 9, 1585-1593.
, M., Yang, Q., Yuan, Q. et al. (
21. Xue, F., Liu, L., Tao, X. et al. (2023) TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway. J. Gynecol. Oncol. 35.
<https://doi.org/10.3802/jgo.2024.35.e64>
22. 2015) Reduced expression of TET1, TET2, TET3 and TDG mRNAs are associated with poor prognosis of patients with early breast cancer. PLoS One 10, e0133896.
< , L., Yu, S.-J., Hong, Q. et al. (https://doi.org/10.1371/journal.pone.0133896>
23. 2023) The novel oncogenic factor TET3 combines with AHR to promote thyroid cancer lymphangiogenesis via the HIF-1α/VEGF signaling pathway. Cancer Cell Int. 23, 206.
< , L., Zhao, R., Qiao, P. et al. (https://doi.org/10.1186/s12935-023-03021-6>
24. 2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13, 237-245.
< , R.-R., Cui, Q.-Y., Murai, K. et al. (https://doi.org/10.1016/j.stem.2013.05.006>