Fol. Biol. 2024, 70, 113-122

https://doi.org/10.14712/fb2024070020113

TET3 Protein Represses Proliferation of the MG-63 Human Osteosarcoma Cell Line by Regulating DNA Demethylation: an Epigenetic Study

Shijun Hang1,2, Bingjun Cui3, Aichun Wei1,2, Zi Li4, Haitao Sun5

1Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, China
2Medical College of Yangzhou University, China
3Department of Emergency, Huai’an Hospital Affiliated to Yangzhou University (The Fifth People’s Hospital of Huai’an), China
4Department of Orthopedics, The Fourth Hospital of Wuhan, Wuhan, China
5Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People’s Hospital, Wuxi, China

Received May 2024
Accepted June 2024

References

1. Bielack, S. S., Kempf-Bielack, B., Delling, G. N. et al. (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776-790. <https://doi.org/10.1200/JCO.2002.20.3.776>
2. Biermann, J. S., Adkins, D. R., Benjamin, R. S. et al. (2010) Bone cancer. J. Natl. Compr. Canc. Netw. 8, 688-712. <https://doi.org/10.6004/jnccn.2010.0051>
3. Carella, A., Tejedor, J. R., García, M. G. et al. (2020) Epigenetic downregulation of TET3 reduces genome‐wide 5hmC levels and promotes glioblastoma tumourigenesis. Int. J. Cancer 146, 373-387. <https://doi.org/10.1002/ijc.32520>
4. Fang, D., Kong, L.-Y., Cai, J. et al. (2015) Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain 156, 1124-1144. <https://doi.org/10.1097/j.pain.0000000000000158>
5. Guo, J. U., Su, Y., Zhong, C. et al. (2011a) Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 10, 2662-2668. <https://doi.org/10.4161/cc.10.16.17093>
6. Guo, J. U., Su, Y., Zhong, C. et al. (2011b) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423-434. <https://doi.org/10.1016/j.cell.2011.03.022>
7. Hu, H., Shu, M., He, L. et al. (2017) Epigenomic landscape of 5-hydroxymethylcytosine reveals its transcriptional regulation of lncRNAs in colorectal cancer. Br. J. Cancer 116, 658-668. <https://doi.org/10.1038/bjc.2016.457>
8. Ito, S., Shen, L., Dai, Q. et al. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303. <https://doi.org/10.1126/science.1210597>
9. Kager, L., Zoubek, A., Pötschger, U. et al. (2003) Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 21, 2011-2018. <https://doi.org/10.1200/JCO.2003.08.132>
10. Kong, R., Zhang, H., Jia, Y. et al. (2022) Integrated analysis revealing the role of TET3-mediated MUC13 promoter hypomethylation in hepatocellular carcinogenesis. Epigeno­mics 14, 1579-1591. <https://doi.org/10.2217/epi-2022-0395>
11. Mo, H. Y., An, C. H., Choi, E. J. et al. (2020) Somatic mutation and loss of expression of a candidate tumour suppressor gene TET3 in gastric and colorectal cancers. Pathol. Res. Pract. 216, 152759. <https://doi.org/10.1016/j.prp.2019.152759>
12. Moran-Crusio, K., Reavie, L., Shih, A. et al. (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11-24. <https://doi.org/10.1016/j.ccr.2011.06.001>
13. Pulikkottil, A. J., Bamezai, S., Ammer, T. et al. (2022) TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways. Leukemia 36, 416-425. <https://doi.org/10.1038/s41375-021-01390-3>
14. Qi, J., Shi, Y., Tan, Y. et al. (2022) Regional gain and global loss of 5-hydroxymethylcytosine coexist in genitourinary cancers and regulate different oncogenic pathways. Clin. Epigenetics 14, 1-16.
15. Rasmussen, K. D., Helin, K. (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733-750. <https://doi.org/10.1101/gad.276568.115>
16. Ren, Y., Song, Z., Rieser, J. et al. (2023) USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: a system biology analysis. Cancers (Basel) 15, 1371. <https://doi.org/10.3390/cancers15051371>
17. Tahiliani, M., Koh, K. P., Shen, Y. et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935. <https://doi.org/10.1126/science.1170116>
18. Tang, Z., Li, C., Kang, B. et al. (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98-W102. <https://doi.org/10.1093/nar/gkx247>
19. Tucker, D. W., Getchell, C. R., McCarthy, E. T. et al. (2018) Epigenetic reprogramming strategies to reverse global loss of 5-hydroxymethylcytosine, a prognostic factor for poor survival in high-grade serous ovarian cancer. Clin. Cancer Res. 24, 1389-1401. <https://doi.org/10.1158/1078-0432.CCR-17-1958>
20. Wang, M., Yang, Q., Yuan, Q. et al. (2016) TET3 and BRCA1 corepress EZH2 to inhibit the aggressive behavior of breast cancer cells. Int. J. Clin. Exp. Med. 9, 1585-1593.
21. Xue, F., Liu, L., Tao, X. et al. (2023) TET3-mediated DNA demethylation modification activates SHP2 expression to promote endometrial cancer progression through the EGFR/ERK pathway. J. Gynecol. Oncol. 35. <https://doi.org/10.3802/jgo.2024.35.e64>
22. Yang, L., Yu, S.-J., Hong, Q. et al. (2015) Reduced expression of TET1, TET2, TET3 and TDG mRNAs are associated with poor prognosis of patients with early breast cancer. PLoS One 10, e0133896. <https://doi.org/10.1371/journal.pone.0133896>
23. Yang, L., Zhao, R., Qiao, P. et al. (2023) The novel oncogenic factor TET3 combines with AHR to promote thyroid cancer lymphangiogenesis via the HIF-1α/VEGF signaling pathway. Cancer Cell Int. 23, 206. <https://doi.org/10.1186/s12935-023-03021-6>
24. Zhang, R.-R., Cui, Q.-Y., Murai, K. et al. (2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13, 237-245. <https://doi.org/10.1016/j.stem.2013.05.006>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive