Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 123-151

https://doi.org/10.14712/fb2024070030123

Immune Checkpoints and Their Inhibition in T-Cell Lymphomas

Jana Seňavová1,2, Anežka Rajmonová2, Václav Heřman1,2, Filip Jura2, Adriana Veľasová2, Iva Hamová1,2, Anton Tkachenko2, Kristýna Kupcová1,2, Ondřej Havránek1,2

11st Department of Medicine – Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
2BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic

Received March 2024
Accepted October 2024

References

1. Abouyabis, A. N., Shenoy, P. J., Lechowicz, M. J. et al. (2008) Incidence and outcomes of the peripheral T-cell lymphoma subtypes in the United States. Leuk. Lymphoma 49, 2099-2107. <https://doi.org/10.1080/10428190802455867>
2. Adams, S. V., Newcomb, P. A., Shustov, A. R. (2016) Racial patterns of peripheral T-cell lymphoma incidence and survival in the United States. J. Clin. Oncol. 34, 963-971. <https://doi.org/10.1200/JCO.2015.63.5540>
3. Ahearne, M. J., Gaskell, C., Jackson, A. E. et al. (2020) AVAIL-T: A phase 2a trial of avelumab, and anti-PD-L1 antibody, in relapsed and refractory peripheral T-cell lymphoma (PTCL). Blood 136, 18-19. <https://doi.org/10.1182/blood-2020-136061>
4. Akhtari, M., Waller, E. K., Jaye, D. L. et al. (2009) Neutropenia in a patient treated with ipilimumab (anti-CTLA-4 anti­body). J. Immunother. 32, 322-324. <https://doi.org/10.1097/CJI.0b013e31819aa40b>
5. Akturk, H. K., Kahramangil, D., Sarwal, A. et al. (2019) Immune checkpoint inhibitor-induced Type 1 diabetes: a systematic review and meta-analysis. Diabet. Med. 36, 1075-1081. <https://doi.org/10.1111/dme.14050>
6. Al-Hamadani, M., Habermann, T. M., Cerhan, J. R. et al. (2015) Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: a longitudinal analysis of the National Cancer Data Base from 1998 to 2011. Am. J. Hematol. 90, 790-795. <https://doi.org/10.1002/ajh.24086>
7. Alaggio, R., Amador, C., Anagnostopoulos, I. et al. (2022) The 5th edition of the World Health Organization classification of haematolymphoid tumors: lymphoid neoplasms. Leukemia 36, 1720-1748. <https://doi.org/10.1038/s41375-022-01620-2>
8. Anand, K., Ensor, J., Pingali, S. R. et al. (2020) T-cell lymphoma secondary to checkpoint inhibitor therapy. J. Immunother. Cancer 8, e000104. <https://doi.org/10.1136/jitc-2019-000104>
9. Anderson, D., Beecher, G., Nathoo, N. et al. (2019) Proposed diagnostic and treatment paradigm for high-grade neurological complications of immune checkpoint inhibitors. Neurooncol. Pract. 6, 340-345.
10. Anderson, J. R., Armitage, J. O., Weisenburger, D. D. (1998) Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s lymphoma classification project. Ann. Oncol. 9, 717-720. <https://doi.org/10.1023/A:1008265532487>
11. Andorsky, D. J., Yamada, R. E., Said, J. et al. (2011) Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin. Cancer Res. 17, 4232-4344. <https://doi.org/10.1158/1078-0432.CCR-10-2660>
12. Antonangeli, F., Natalini, A., Garassino, M. C. et al. (2020) Regulation of PD-L1 expression by NF-κB in cancer. Front. Immunol. 11, 584626. <https://doi.org/10.3389/fimmu.2020.584626>
13. Anzengruber, F., Ignatova, D., Schlaepfer, T. et al. (2019) Divergent LAG-3 versus BTLA, TIGIT, and FCRL3 expression in Sézary syndrome. Leuk. Lymphoma 60, 1899-1907. <https://doi.org/10.1080/10428194.2018.1564827>
14. Armand, P., Engert, A., Younes, A. et al. (2018) Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J. Clin. Oncol. 36, 1428-1439. <https://doi.org/10.1200/JCO.2017.76.0793>
15. Armand, P., Rodig, S., Melnichenko, V. et al. (2019) Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J. Clin. Oncol. 37, 3291-3299. <https://doi.org/10.1200/JCO.19.01389>
16. Armengol, M., Santos, J. C., Fernández-Serrano, M. et al. (2021) Immune-checkpoint inhibitors in B-cell lymphoma. Cancers (Basel) 13, 214. <https://doi.org/10.3390/cancers13020214>
17. Assaf, C., Dobos, G., Zech, I. M. et al. (2023) Epidemiology of mature T/NK-cell lymphomas in Germany – a representative cross-sectional study based on SHI claims data. J. Dtsch. Dermatol. Ges. 21, 1320-1327.
18. Avelino, A. R., Elmanaseer, O., Wrzesinski, S. et al. (2022) T-cell prolymphocytic leukaemia associated with immune checkpoint inhibitor (pembrolizumab). BMJ Case Rep. 15, e245603. <https://doi.org/10.1136/bcr-2021-245603>
19. Bai, B., Wang, X. X., Gao, Y. et al. (2021) Prior anti-PD-1 therapy as a risk factor for life-threatening peri-engraftment respiratory distress syndrome in patients undergoing autologous stem cell transplantation. Bone Marrow Transplant. 56, 1151-1158. <https://doi.org/10.1038/s41409-020-01164-y>
20. Bajorin, D. F., Witjes, J. A., Gschwend, J. E. et al. (2021) Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102-2114. <https://doi.org/10.1056/NEJMoa2034442>
21. Bar-Sela, G., Bergman, R. (2015) Complete regression of mycosis fungoides after ipilimumab therapy for advanced melanoma. JAAD Case Rep. 1, 99-100. <https://doi.org/10.1016/j.jdcr.2015.02.009>
22. Bardelli, V., Arniani, S., Pierini, V. et al. (2021) T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness. Genes (Basel) 12, 1118. <https://doi.org/10.3390/genes12081118>
23. Barilŕ, G., Teramo, A., Calabretto, G. et al. (2020) Stat3 mutations impact on overall survival in large granular lymphocyte leukemia: a single-center experience of 205 patients. Leukemia 34, 1116-1124. <https://doi.org/10.1038/s41375-019-0644-0>
24. Basu, A., Ramamoorthi, G., Albert, G. et al. (2021) Differentiation and regulation of TH cells: a balancing act for cancer immunotherapy. Front. Immunol. 12, 669474. <https://doi.org/10.3389/fimmu.2021.669474>
25. Basudan, A. M. (2022) The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 13, 22-40. <https://doi.org/10.3390/clinpract13010003>
26. Battaglia, M., Gregori, S., Bacchetta, R. et al. (2006) Tr1 cells: from discovery to their clinical application. Semin. Immunol. 18, 120-127. <https://doi.org/10.1016/j.smim.2006.01.007>
27. Beatty, G. L., Gladney, W. L. (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687-692. <https://doi.org/10.1158/1078-0432.CCR-14-1860>
28. Bekkenk, M. W., Geelen, F. A. M. J., van Voorst Vader, P. C. et al. (2000) Primary and secondary cutaneous CD30+ lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 95, 3653-3661. <https://doi.org/10.1182/blood.V95.12.3653>
29. Benharroch, D., Meguerian-Bedoyan, Z., Lamant, L. et al. (1998) ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 91, 2076-2084. <https://doi.org/10.1182/blood.V91.6.2076>
30. Bennani, N. N., Ansell, S. M. (2019) Tumor microenvironment in T-cell lymphomas. Cancer Treat. Res. 176, 69-82. <https://doi.org/10.1007/978-3-319-99716-2_3>
31. Bennani, N. N., Kim, H. J., Pederson, L. D. et al. (2022) Nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma: modest activity and cases of hyperprogression. J. Immunother. Cancer 10, e004984. <https://doi.org/10.1136/jitc-2022-004984>
32. Bennani, N. N., Pederson, L. D., Atherton, P. et al. (2019) A phase II study of nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma. Blood 134, 467. <https://doi.org/10.1182/blood-2019-126194>
33. Board, R., Smittenaar, R., Lawton, S. et al. (2021) Metastatic melanoma patient outcomes since introduction of immune checkpoint inhibitors in England between 2014 and 2018. Int. J. Cancer 148, 868-875. <https://doi.org/10.1002/ijc.33266>
34. Bollard, C. M., Gottschalk, S., Torrano, V. et al. (2014) Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798-808. <https://doi.org/10.1200/JCO.2013.51.5304>
35. Borcherding, N., Severson, K. J., Henderson, N. et al. (2023) Single-cell analysis of Sézary syndrome reveals novel markers and shifting gene profiles associated with treatment. Blood Adv. 7, 321-335. <https://doi.org/10.1182/bloodadvances.2021005991>
36. Buchbinder, E. I., Desai, A. (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98-106. <https://doi.org/10.1097/COC.0000000000000239>
37. Cai, J., Liu, P., Huang, H. et al. (2020a) Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct.Target. Ther. 5, 289. <https://doi.org/10.1038/s41392-020-00331-3>
38. Cai, Q., Huang, H., Liu, P. et al. (2020b) Safety and preliminary efficacy of sintilimab plus P-gemox (pegaspargase, gemcitabine and oxaliplatin) regimen as first-line treatment for patients with advanced extranodal natural killer/T cell lymphoma, nasal type: an open-label, multicenter, phase 2 study. Blood 136, 26-27. <https://doi.org/10.1182/blood-2020-136949>
39. Calì, B., Molon, B., Viola, A. (2017) Tuning cancer fate: the unremitting role of host immunity. Open Biol. 7, 170006. <https://doi.org/10.1098/rsob.170006>
40. Campbell, J. J., Clark, R. A., Watanabe, R. et al. (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116, 767-771. <https://doi.org/10.1182/blood-2009-11-251926>
41. Campo, E., Jaffe, E. S., Cook, J. R. et al. (2022) The international consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood 140, 1229-1253. <https://doi.org/10.1182/blood.2022015851>
42. Cao, S., Wylie, K. M., Wyczalkowski, M. A. et al. (2019) Dynamic host immune response in virus-associated cancers. Commun. Biol. 2, 109. <https://doi.org/10.1038/s42003-019-0352-3>
43. Cetinözman, F., Jansen, P. M., Vermeer, M. H. et al. (2012) Differential expression of programmed death-1 (PD-1) in Sézary syndrome and mycosis fungoides. Arch. Dermatol. 148, 1379-1385. <https://doi.org/10.1001/archdermatol.2012.2089>
44. Chatzigeorgiou, A., Lyberi, M., Chatzilymperis, G. et al. (2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35, 474-483. <https://doi.org/10.1002/biof.62>
45. Chen, B. J., Chapuy, B., Ouyang, J. et al. (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 19, 3462-3473. <https://doi.org/10.1158/1078-0432.CCR-13-0855>
46. Chen, G., Emens, L. A. (2013) Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol. Immunother. 62, 203-216. <https://doi.org/10.1007/s00262-012-1388-0>
47. Chen, L., Flies, D. B. (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227-242. <https://doi.org/10.1038/nri3405>
48. Chen, X., Wu, W., Wei, W. et al. (2022) Immune checkpoint inhibitors in peripheral T-cell lymphoma. Front. Pharmacol. 13, 869488. <https://doi.org/10.3389/fphar.2022.869488>
49. Chen, Y., Li, M., Cao, J. et al. (2021) CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression. Open Life Sci. 16, 909-919. <https://doi.org/10.1515/biol-2021-0094>
50. Chikuma, S. (2017) CTLA-4, an essential immune-checkpoint for T-cell activation. Curr. Top. Microbiol. Immunol. 410, 99-126.
51. Choi, J., Goh, G., Walradt, T. et al. (2015) Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 47, 1011-1019. <https://doi.org/10.1038/ng.3356>
52. Chung, H. C., Ros, W., Delord, J. P. et al. (2019) Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 37, 1470-1478. <https://doi.org/10.1200/JCO.18.01265>
53. Cohen, J. I., Iwatsuki, K., Ko, Y. H. e al. (2020) Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leuk. Lymphoma 61, 808-819. <https://doi.org/10.1080/10428194.2019.1699080>
54. Coiffier, B., Pro, B., Prince, H. M. et al. (2014) Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J. Hematol. Oncol. 7, 11. <https://doi.org/10.1186/1756-8722-7-11>
55. Curigliano, G., Gelderblom, H., Mach, N. et al. (2021) Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin. Cancer Res. 27, 3620-3629. <https://doi.org/10.1158/1078-0432.CCR-20-4746>
56. de Leval, L., Rickman, D. S., Thielen, C. et al. (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952-4963. <https://doi.org/10.1182/blood-2006-10-055145>
57. Decroos, A., Giustiniani, J., Pelletier, L. et al. (2021) PD1 in Sézary syndrome: a repressor of cell survival sometimes lost during progression, but a new target using depleting antibodies? Eur. J. Cancer 156, S14-S15. <https://doi.org/10.1016/S0959-8049(21)00652-3>
58. Delyon, J., Mateus, C., Lambert, T. (2011) Hemophilia A induced by ipilimumab. N. Engl. J. Med. 365, 1747-1748. <https://doi.org/10.1056/NEJMc1110923>
59. Di Napoli, A., De Cecco, L., Piccaluga, P. P. et al. (2019) Transcriptional analysis distinguishes breast implant-associated anaplastic large cell lymphoma from other peripheral T-cell lymphomas. Mod. Pathol. 32, 216-230. <https://doi.org/10.1038/s41379-018-0130-7>
60. Dobos, G., Pohrt, A., Ram-Wolff, C. et al. (2020) Epidemiology of cutaneous T-cell lymphomas: a systematic review and meta-analysis of 16,953 patients. Cancers (Basel) 12, 2921. <https://doi.org/10.3390/cancers12102921>
61. Doroshow, D. B., Bhalla, S., Beasley, M. B. et al. (2021) PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345-362. <https://doi.org/10.1038/s41571-021-00473-5>
62. Drake, C. G., Jaffee, E., Pardoll, D. M. (2006) Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51-81. <https://doi.org/10.1016/S0065-2776(06)90002-9>
63. Du, L., Zhang, L., Li, L. et al. (2020) Effective treatment with PD-1 antibody, chidamide, etoposide, and thalidomide (PCET) for relapsed/refractory natural killer/T-cell lymphoma: a report of three cases. Onco Targets Ther. 13, 7189-7197. <https://doi.org/10.2147/OTT.S262039>
64. Duke, T. C., Nair, R., Torres-Cabala, C. et al. (2020) Angioimmunoblastic T-cell lymphoma associated with immune checkpoint inhibitor treatment. JAAD Case Rep. 6, 1264-1267. <https://doi.org/10.1016/j.jdcr.2020.09.020>
65. Elia, G., Ferrari, S. M., Galdiero, M. R. et al. (2020) New insight in endocrine-related adverse events associated to immune checkpoint blockade. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101370. <https://doi.org/10.1016/j.beem.2019.101370>
66. Fadel, F., El Karoui, K., Knebelmann, B. (2009) Anti-CTLA4 antibody-induced lupus nephritis. N. Engl. J. Med. 361, 211-212. <https://doi.org/10.1056/NEJMc0904283>
67. Fantin, V. R., Loboda, A., Paweletz, C. P. et al. (2008) Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 68, 3785-3794. <https://doi.org/10.1158/0008-5472.CAN-07-6091>
68. Farhood, B., Najafi, M., Mortezaee, K. (2019) CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J. Cell. Physiol. 234, 8509-8521. <https://doi.org/10.1002/jcp.27782>
69. Feng, Y., Zhong, M., Liu, Y. et al. (2018) Expression of TIM-3 and LAG-3 in extranodal NK/T cell lymphoma, nasal type. Histol. Histopathol. 33, 307-315.
70. Ferrara, R., Imbimbo, M., Malouf, R. et al. (2020) Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer. Cochrane Database Syst. Rev. 12, Cd013257.
71. Folkes, A. S., Feng, M., Zain, J. M. et al. (2018) Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr. Opin. Oncol. 30, 332-337. <https://doi.org/10.1097/CCO.0000000000000468>
72. Forde, P. M., Spicer, J., Lu, S. et al. (2022) Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973-1985. <https://doi.org/10.1056/NEJMoa2202170>
73. Fox, C. P., Boumendil, A., Schmitz, N. et al. (2015) High-dose therapy and autologous stem cell transplantation for extra-nodal NK/T lymphoma in patients from the Western hemisphere: a study from the European Society for Blood and Marrow Transplantation. Leuk. Lymphoma 56, 3295-3300. <https://doi.org/10.3109/10428194.2015.1037764>
74. Fu, Y., Lin, Q., Zhang, Z. et al. (2020) Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B 10, 414-433. <https://doi.org/10.1016/j.apsb.2019.08.010>
75. Garassino, M. C., Cho, B. C., Kim, J. H. et al. (2018) Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 19, 521-536. <https://doi.org/10.1016/S1470-2045(18)30144-X>
76. Garon, E. B., Rizvi, N. A., Hui, R. et al. (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018-2028. <https://doi.org/10.1056/NEJMoa1501824>
77. Ghione, P., Moskowitz, A. J., De Paola, N. E. K. et al. (2018) Novel immunotherapies for T cell lymphoma and leukemia. Curr. Hematol. Malig. Rep. 13, 494-506. <https://doi.org/10.1007/s11899-018-0480-8>
78. Gibson, H. M., Mishra, A., Chan, D. V. et al. (2013) Impaired proteasome function activates GATA3 in T cells and upregulates CTLA-4: relevance for Sézary syndrome. J. Invest. Dermatol. 133, 249-257. <https://doi.org/10.1038/jid.2012.265>
79. Gniadecki, R., Rossen, K. (2003) Expression of T-cell activation marker CD134 (OX40) in lymphomatoid papulosis. Br. J. Dermatol. 148, 885-891. <https://doi.org/10.1046/j.1365-2133.2003.05286.x>
80. Gu, Q., Li, J., Chen, Z. et al. (2021) Expression and prognostic significance of PD-L2 in diffuse large B-cell lymphoma. Front. Oncol. 11, 664032. <https://doi.org/10.3389/fonc.2021.664032>
81. Hansen, K., Kumar, S., Logronio, K. et al. (2021) COM902, a novel therapeutic antibody targeting TIGIT augments anti-tumor T cell function in combination with PVRIG or PD-1 pathway blockade. Cancer Immunol. Immunother. 70, 3525-3540. <https://doi.org/10.1007/s00262-021-02921-8>
82. Harlin, H., Hwang, K. W., Palucki, D. A. et al. (2002) CTLA-4 engagement regulates NF-κB activation in vivo. Eur. J. Immunol. 32, 2095-2104. <https://doi.org/10.1002/1521-4141(200208)32:8<2095::AID-IMMU2095>3.0.CO;2-E>
83. Hassler, M. R., Pulverer, W. et al. (2016) Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 17, 596-608. <https://doi.org/10.1016/j.celrep.2016.09.018>
84. Hatic, H., Sampat, D., Goyal, G. (2021) Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann. Transl. Med. 9, 1037. <https://doi.org/10.21037/atm-20-6833>
85. Haverkos, B. M., Coleman, C., Gru, A. A. et al. (2017) Emerging insights on the pathogenesis and treatment of extranodal NK/T cell lymphomas (ENKTL). Discov. Med. 23, 189-199.
86. Haverkos, B. M., Pan, Z., Gru, A. A. et al. (2016) Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT): an update on epidemiology, clinical presentation, and natural history in North American and European cases. Curr. Hematol. Malig. Rep. 11, 514-527. <https://doi.org/10.1007/s11899-016-0355-9>
87. Hay, Z. L. Z., Slansky, J. E. (2022) Granzymes: the molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci. 23, 1833. <https://doi.org/10.3390/ijms23031833>
88. He, H.-X., Gao, Y., Fu, J.-C. et al. (2021) VISTA and PD-L1 synergistically predict poor prognosis in patients with extranodal natural killer/T-cell lymphoma. Oncoimmunology 10, 1907059. <https://doi.org/10.1080/2162402X.2021.1907059>
89. He, Y., Rivard, C. J., Rozeboom, L. et al. (2016) Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci. 107, 1193-1197. <https://doi.org/10.1111/cas.12986>
90. Heavican, T. B., Bouska, A., Yu, J. et al. (2019) Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133, 1664-1676. <https://doi.org/10.1182/blood-2018-09-872549>
91. Hebart, H., Lang, P., Woessmann, W. (2016) Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann. Intern. Med. 165, 607-608. <https://doi.org/10.7326/L16-0037>
92. Heinzerling, L., Ott, P. A., Hodi, F. S. et al. (2016) Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50. <https://doi.org/10.1186/s40425-016-0152-y>
93. Herbst, R. S., Giaccone, G., de Marinis, F. et al. (2020) Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N. Engl. J. Med. 383, 1328-1339. <https://doi.org/10.1056/NEJMoa1917346>
94. Herling, M., Khoury, J. D., Washington, L. T. et al. (2004) A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood 104, 328-335. <https://doi.org/10.1182/blood-2004-01-0002>
95. Hill, L., Rouce, R. H., Smith, T. S. et al. (2020) CD5 CAR T-cells for treatment of patients with relapsed/refractory CD5 expressing T-cell lymphoma demonstrates safety and anti-tumor activity. Biol. Blood Marrow Transplant. 26, S237. <https://doi.org/10.1016/j.bbmt.2019.12.482>
96. Hill, L. C., Rouce, R. H., Smith, T. S. et al. (2019) Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies. Blood 134, 199. <https://doi.org/10.1182/blood-2019-129559>
97. Hodson, A., Crichton, S., Montoto, S. et al. (2011) Use of zidovudine and interferon alfa with chemotherapy improves survival in both acute and lymphoma subtypes of adult T-cell leukemia/lymphoma. J. Clin. Oncol. 29, 4696-4701. <https://doi.org/10.1200/JCO.2011.35.5578>
98. Horlad, H., Ohnishi, K., Ma, C. et al. (2016) TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma. Oncol. Lett. 12, 1519-1524. <https://doi.org/10.3892/ol.2016.4774>
99. Horwitz, S., O’Connor, O. A., Pro, B. et al. (2019) Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393, 229-240. <https://doi.org/10.1016/S0140-6736(18)32984-2>
100. Horwitz, S. M., Advani, R. H., Bartlett, N. L. et al. (2014) Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 123, 3095-3100. <https://doi.org/10.1182/blood-2013-12-542142>
101. Hossen, M. M., Ma, Y., Yin, Z. et al. (2023) Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front. Immunol. 14, 1198365. <https://doi.org/10.3389/fimmu.2023.1198365>
102. Hristov, A. C., Tejasvi, T., Wilcox, R. A. (2023) Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 98, 193-209. <https://doi.org/10.1002/ajh.26760>
103. Huang, H.-Q., Tao, R., Zou, L. et al. (2019) Preliminary results from a multicenter, single-arm, phase 2 study of CS1001, an anti-programmed death-ligand 1 (PD-L1) human monoclonal antibody (mAb), in patients (pts) with relapsed or refractory extranodal natural killer/T cell lymphoma (rr-ENKTL). Blood 134, 2833. <https://doi.org/10.1182/blood-2019-121865>
104. Huang, Y., Moreau, A., Dupuis, J. et al. (2009) Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am. J. Surg. Pathol. 33, 682-690. <https://doi.org/10.1097/PAS.0b013e3181971591>
105. Huo, J.-L., Wang, Y.-T., Fu, W.-J. et al. (2022) The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front. Immunol. 13, 956090. <https://doi.org/10.3389/fimmu.2022.956090>
106. Huuhtanen, J., Bhattacharya, D., Lönnberg, T. et al. (2022) Single-cell characterization of leukemic and non-leukemic immune repertoires in CD8+ T-cell large granular lymphocytic leukemia. Nat. Commun. 13, 1981. <https://doi.org/10.1038/s41467-022-29173-z>
107. Imura, A., Hori, T., Imada, K. et al. (1997) OX40 expressed on fresh leukemic cells from adult T-cell leukemia patients mediates cell adhesion to vascular endothelial cells: implication for the possible involvement of OX40 in leukemic cell infiltration. Blood 89, 2951-2958. <https://doi.org/10.1182/blood.V89.8.2951>
108. Iyer, S. P., Neelapu, S. S., Burns, E. et al. (2019) A phase I/II study to examine the safety and efficacy of pembrolizumab 200 mg fixed dose administered every 3 weeks (Q3W) in combination with romidepsin in relapsed or refractory peripheral T-cell lymphoma (PTCL). Blood 134, 1546. <https://doi.org/10.1182/blood-2019-132278>
109. Iyer, S. P., Xu, J., Becnel, M. R. et al. (2020) A phase II study of pembrolizumab in combination with romidepsin demonstrates durable responses in relapsed or refractory T-cell lymphoma (TCL). Blood 136, 40-41. <https://doi.org/10.1182/blood-2020-143252>
110. Iżykowska, K., Rassek, K., Korsak, D. et al. (2020) Novel targeted therapies of T cell lymphomas. J. Hematol. Oncol. 13, 176. <https://doi.org/10.1186/s13045-020-01006-w>
111. Izzedine, H., Gueutin, V., Gharbi, C. et al. (2014) Kidney injuries related to ipilimumab. Invest. New Drugs 32, 769-773. <https://doi.org/10.1007/s10637-014-0092-7>
112. Jacenik, D., Karagiannidis, I., Beswick, E. J. (2023) Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. Br. J. Cancer 128, 387-397. <https://doi.org/10.1038/s41416-022-02056-2>
113. Janssen, J. B. E., Leow, T. Y. S., Herbschleb, K. H. et al. (2021) Immune checkpoint inhibitor-related Guillain-Barré syndrome: a case series and review of the literature. J. Immunother. 44, 276-282. <https://doi.org/10.1097/CJI.0000000000000364>
114. Jariwala, N., Benoit, B., Kossenkov, A. V. et al. (2017) TIGIT and Helios are highly expressed on CD4+ T cells in Sézary syndrome patients. J. Invest. Dermatol. 137, 257-260. <https://doi.org/10.1016/j.jid.2016.08.016>
115. Jeong, S. H. (2020) Extranodal NK/T cell lymphoma. Blood Res. 55, S63-S71. <https://doi.org/10.5045/br.2020.S011>
116. Jiang, M., Zhang, H., Jiang, Y. et al. (2012) Phase 2 trial of “sandwich” L-asparaginase, vincristine, and prednisone chemotherapy with radiotherapy in newly diagnosed, stage IE to IIE, nasal type, extranodal natural killer/T-cell lymphoma. Cancer 118, 3294-3301. <https://doi.org/10.1002/cncr.26629>
117. Jiang, Y., Chen, M., Nie, H. et al. (2019) PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother. 15, 1111-1122. <https://doi.org/10.1080/21645515.2019.1571892>
118. Jo, J. C., Kim, M., Choi, Y. et al. (2017) Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann. Hematol. 96, 25-31. <https://doi.org/10.1007/s00277-016-2818-4>
119. John, L. B., Devaud, C., Duong, C. P. et al. (2013a) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636-5646. <https://doi.org/10.1158/1078-0432.CCR-13-0458>
120. John, L. B., Kershaw, M. H., Darcy, P. K. (2013b) Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2, e26286. <https://doi.org/10.4161/onci.26286>
121. Johnson, D. B., Balko, J. M., Compton, M. L. et al. (2016) Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J .Med. 375, 1749-1755. <https://doi.org/10.1056/NEJMoa1609214>
122. Joller, N., Hafler, J. P., Brynedal, B. et al. (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186, 1338-1342. <https://doi.org/10.4049/jimmunol.1003081>
123. Joller, N., Lozano, E., Burkett, P. R. et al. (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569-581. <https://doi.org/10.1016/j.immuni.2014.02.012>
124. Jones, C. L., Degasperi, A., Grandi, V. et al. (2021) Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci. Rep. 11, 3962. <https://doi.org/10.1038/s41598-021-83352-4>
125. Jones, D., Fletcher, C. D. M., Pulford, K. et al. (1999) The T-cell activation markers CD30 and OX40/CD134 are expressed in nonoverlapping subsets of peripheral T-cell lymphoma. Blood 93, 3487-3493. <https://doi.org/10.1182/blood.V93.10.3487.410k39_3487_3493>
126. Junttila, I. S. (2018) Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol. 9, 888. <https://doi.org/10.3389/fimmu.2018.00888>
127. Jutz, S., Hennig, A., Paster, W. et al. (2017) A cellular platform for the evaluation of immune checkpoint molecules. Oncotarget 8, 64892-64906. <https://doi.org/10.18632/oncotarget.17615>
128. Kao, J. C., Brickshawana, A., Liewluck, T. (2018) Neuromuscular complications of programmed cell death-1 (PD-1) inhibitors. Curr. Neurol. Neurosci. Rep. 18, 63. <https://doi.org/10.1007/s11910-018-0878-7>
129. Karube, K., Tsuzuki, S., Yoshida, N. et al. (2013) Comprehensive gene expression profiles of NK cell neoplasms identify vorinostat as an effective drug candidate. Cancer Lett. 333, 47-55. <https://doi.org/10.1016/j.canlet.2012.12.022>
130. Kataoka, K., Iwanaga, M., Yasunaga, J.-I. et al.(2018) Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood 131, 215-225. <https://doi.org/10.1182/blood-2017-01-761874>
131. Kataoka, K., Nagata, Y., Kitanaka, A. et al. (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47, 1304-1315. <https://doi.org/10.1038/ng.3415>
132. Kaushik, I., Ramachandran, S., Zabel, C. et al. (2022) The evolutionary legacy of immune checkpoint inhibitors. Semin. Cancer Biol. 86, 491-498. <https://doi.org/10.1016/j.semcancer.2022.03.020>
133. Kawana, Y., Suga, H., Kamijo, H. et al. (2021) Roles of OX40 and OX40 ligand in mycosis fungoides and Sézary syndrome. Int. J. Mol. Sci. 22, 12576. <https://doi.org/10.3390/ijms222212576>
134. Keir, M. E., Butte, M. J., Freeman, G. J. et al. (2008) PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677-704. <https://doi.org/10.1146/annurev.immunol.26.021607.090331>
135. Kempf, W., Mitteldorf, C. (2021) Cutaneous T-cell lymphomas – an update 2021. Hematol. Oncol. 39, 46-51. <https://doi.org/10.1002/hon.2850>
136. Khodadoust, M. S., Rook, A. H., Porcu, P. et al. (2020) Pembrolizumab in relapsed and refractory mycosis fungoides and Sézary syndrome: a multicenter phase II study. J. Clin. Oncol. 38, 20-28. <https://doi.org/10.1200/JCO.19.01056>
137. Kim, G. E., Cho, J. H., Yang, W. I. et al. (2000) Angiocentric lymphoma of the head and neck: patterns of systemic failure after radiation treatment. J. Clin. Oncol. 18, 54-63. <https://doi.org/10.1200/JCO.2000.18.1.54>
138. Kim, S. J., Lim, J. Q., Laurensia, Y. et al. (2020) Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. Blood 136, 2754-2763. <https://doi.org/10.1182/blood.2020007247>
139. Kim, S. K., Cho, S. W. (2022) The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front. Pharmacol. 13, 868695. <https://doi.org/10.3389/fphar.2022.868695>
140. Kim, W. Y., Jung, H. Y., Nam, S. J. et al. (2016) Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 469, 581-590. <https://doi.org/10.1007/s00428-016-2011-0>
141. Kim, Y. H., Bagot, M., Pinter-Brown, L. et al. (2018) Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19, 1192-1204. <https://doi.org/10.1016/S1470-2045(18)30379-6>
142. Klee, G., von Dücker, L., Terheyden, P. (2020) Sustained complete remission of extranodal NK/T-cell lymphoma, nasal type, following pembrolizumab and radiation therapy. J. Dtsch. Dermatol. Ges. 18, 1019-1021.
143. Klempner, S. J., Fabrizio, D., Bane, S. et al. (2020) Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist 25, e147-e159. <https://doi.org/10.1634/theoncologist.2019-0244>
144. Knaus, H. A., Kanakry, C. G., Luznik, L. et al. (2017) Immunomodulatory drugs: immune checkpoint agents in acute leukemia. Curr. Drug Targets 18, 315-331. <https://doi.org/10.2174/1389450116666150518095346>
145. Kokubo, K., Onodera, A., Kiuchi, M. et al. (2022) Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front. Immunol. 13, 945063. <https://doi.org/10.3389/fimmu.2022.945063>
146. Kondelkova, K., Vokurkova, D., Krejsek, J. et al. (2010) Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove) 53, 73-77. <https://doi.org/10.14712/18059694.2016.63>
147. Kouzaki, H., Kitanishi, T., Kitano, H. et al. (2004) Successful treatment of disseminated nasal T-cell lymphoma using high-dose chemotherapy and autologus peripheral blood stem cell transplantation: a case report. Auris Nasus Larynx 31, 79-83. <https://doi.org/10.1016/j.anl.2003.07.005>
148. Kozako, T., Yoshimitsu, M., Fujiwara, H. et al. (2009) PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia 23, 375-382. <https://doi.org/10.1038/leu.2008.272>
149. Kravtsov, D. S., Erbe, A. K., Sondel, P. M. et al. (2022) Roles of CD4+ T cells as mediators of antitumor immunity. Front. Immunol. 13, 972021. <https://doi.org/10.3389/fimmu.2022.972021>
150. Krishnan, C., Warnke, R. A., Arber, D. A. et al. (2010) PD-1 expression in T-cell lymphomas and reactive lymphoid entities: potential overlap in staining patterns between lymphoma and viral lymphadenitis. Am. J. Surg. Pathol. 34, 178-189. <https://doi.org/10.1097/PAS.0b013e3181cc7e79>
151. Kroll, M. H., Rojas-Hernandez, C., Yee, C. (2022) Hematologic complications of immune checkpoint inhibitors. Blood 139, 3594-3604. <https://doi.org/10.1182/blood.2020009016>
152. Kwong, Y. L., Chan, T. S. Y., Tan, D. et al. (2017) PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing L-asparaginase. Blood 129, 2437-2442. <https://doi.org/10.1182/blood-2016-12-756841>
153. Lai, P., Liu, F., Liu, X. et al. (2023) Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front. Immunol. 14, 1270365. <https://doi.org/10.3389/fimmu.2023.1270365>
154. Läubli, H., Balmelli, C., Bossard, M. et al. (2015) Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J. Immunother. Cancer 3, 11. <https://doi.org/10.1186/s40425-015-0057-1>
155. Lee, J., Lozano-Ruiz, B., Yang, F. M. et al. (2021) The multifaceted role of Th1, Th9, and Th17 cells in immune checkpoint inhibition therapy. Front. Immunol. 12, 625667. <https://doi.org/10.3389/fimmu.2021.625667>
156. Lee, M. Y., Jeon, J. W., Sievers, C. et al. (2020) Antigen processing and presentation in cancer immunotherapy. J. Immunother. Cancer 8, e001111. <https://doi.org/10.1136/jitc-2020-001111>
157. Lee, S. H., Ahn, Y. C., Kim, W. S. et al. (2006) The effect of pre-irradiation dose intense CHOP on anthracyline resistance in localized nasal NK/T-cell lymphoma. Haematologica 91, 427-428.
158. Lesokhin, A. M., Ansell, S. M., Armand, P. et al. (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J. Clin. Oncol. 34, 2698-2704. <https://doi.org/10.1200/JCO.2015.65.9789>
159. Lewis, N. E., Petrova-Drus, K., Huet, S. et al. (2020) Clonal hematopoiesis in angioimmunoblastic T-cell lymphoma with divergent evolution to myeloid neoplasms. Blood Adv. 4, 2261-2271. <https://doi.org/10.1182/bloodadvances.2020001636>
160. Li, W., Zheng, Q., Luo, X. et al. (2023) The predictive implication of programmed cell death ligand 1 expression in extranodal natural killer/T-cell lymphoma and its correlation with clinicopathological features: a systematic review and meta-analysis. Transl. Cancer Res. 12, 2115-2127. <https://doi.org/10.21037/tcr-22-2569>
161. Li, X., Cheng, Y., Zhang, M. et al. (2018) Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J. Hematol. Oncol. 11, 15. <https://doi.org/10.1186/s13045-018-0559-7>
162. Liu, S., Liu, W., Li, H. et al. (2022) Epidemiological characteristics of peripheral T-cell lymphoma: a population-based study. Front. Oncol. 12, 863269. <https://doi.org/10.3389/fonc.2022.863269>
163. Liu, Y., Song, Y., Zuo, S. et al. (2023) Antitumor activity and safety of camrelizumab combined with apatinib in patients with relapsed or refractory peripheral T-cell lymphoma: an open-label, multicenter, phase II study. Front. Immunol. 14, 1128172. <https://doi.org/10.3389/fimmu.2023.1128172>
164. Long, L., Zhang, X., Chen, F. et al. (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9, 176-189. <https://doi.org/10.18632/genesandcancer.180>
165. Lu, C., Zhang, Y. C., Chen, Z. H. et al. (2022) Applications of circulating tumor DNA in immune checkpoint inhibition: emerging roles and future perspectives. Front. Oncol. 12, 836891. <https://doi.org/10.3389/fonc.2022.836891>
166. Manieri, N. A., Chiang, E. Y., Grogan, J. L. (2017) TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 38, 20-28. <https://doi.org/10.1016/j.it.2016.10.002>
167. Marchi, E., O’Connor, O. A. (2020) The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management. CA Cancer J. Clin. 70, 47-70. <https://doi.org/10.3322/caac.21589>
168. Margolskee, E., Jobanputra, V., Lewis, S. K. et al. (2013) Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS One 8, e68343. <https://doi.org/10.1371/journal.pone.0068343>
169. Maria Pamela, D., Francois, L., Edoardo, M. et al. (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102, e148-e151.
170. Markham, A., Keam, S. J. (2019) Camrelizumab: first global approval. Drugs 79, 1355-1361. <https://doi.org/10.1007/s40265-019-01167-0>
171. Matsushita, M. (2021) Novel treatment strategies utilizing immune reactions against chronic myelogenous leukemia stem cells. Cancers (Basel) 13, 5435. <https://doi.org/10.3390/cancers13215435>
172. McEachron, T. A., Kirov, I., Wungwattana, M. et al. (2016) Successful treatment of genetically profiled pediatric extranodal NK/T-cell lymphoma targeting oncogenic STAT3 mutation. Pediatr. Blood Cancer 63, 727-730. <https://doi.org/10.1002/pbc.25854>
173. Menter, T., Tzankov, A. (2018) Mechanisms of immune evasion and immune modulation by lymphoma cells. Front. Oncol. 8, 54. <https://doi.org/10.3389/fonc.2018.00054>
174. Merrill, M. H., Dahi, P. B., Redd, R. A. et al. (2023) A phase 2 study of pembrolizumab after autologous stem cell transplantation in patients with T-cell non-Hodgkin lymphoma. Blood 142, 621-628. <https://doi.org/10.1182/blood.2023020244>
175. Mettu, N. B., Ulahannan, S. V., Bendell, J. C. et al. (2022) A phase 1a/b open-label, dose-escalation study of etigilimab alone or in combination with nivolumab in patients with locally advanced or metastatic solid tumors. Clin. Cancer Res. 28, 882-892. <https://doi.org/10.1158/1078-0432.CCR-21-2780>
176. Michielin, O., van Akkooi, A. C. J., Ascierto, P. A. et al. (2019) Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 1884-1901. <https://doi.org/10.1093/annonc/mdz411>
177. Michot, J. M., Mouraud, S., Adam, J. et al. (2021) CD8+ T lymphocytes immune depletion and LAG-3 overexpression in Hodgkin lymphoma tumor microenvironment exposed to anti-PD-1 immunotherapy. Cancers (Basel) 13, 5487. <https://doi.org/10.3390/cancers13215487>
178. Miyoshi, H., Kiyasu, J., Kato, T. et al. (2016) PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood 128, 1374-1381. <https://doi.org/10.1182/blood-2016-02-698936>
179. Moik, F., Chan, W. E., Wiedemann, S. et al. (2021) Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood 137, 1669-1678. <https://doi.org/10.1182/blood.2020007878>
180. Mossé, Y. P., Lim, M. S., Voss, S. D. et al. (2013) Safety and activity of crizotinib for paediatric patients with refractory solid tumors or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472-480. <https://doi.org/10.1016/S1470-2045(13)70095-0>
181. Mossé, Y. P., Voss, S. D., Lim, M. S. et al. (2017) Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children’s Oncology Group study. J. Clin. Oncol. 35, 3215-3221. <https://doi.org/10.1200/JCO.2017.73.4830>
182. Muenst, S., Laubli, H., Soysal, S. D. et al. (2016) The immune system and cancer evasion strategies: therapeutic concepts. J. Intern. Med. 279, 541-562. <https://doi.org/10.1111/joim.12470>
183. Murashige, N., Kami, M., Kishi, Y. et al. (2005) Allogeneic haematopoietic stem cell transplantation as a promising treatment for natural killer-cell neoplasms. Br. J. Haematol. 130, 561-567. <https://doi.org/10.1111/j.1365-2141.2005.05651.x>
184. Murga-Zamalloa, C. A., Brown, N. A., Wilcox, R. A. (2020) Expression of the checkpoint receptors LAG-3, TIM-3 and VISTA in peripheral T cell lymphomas. J. Clin. Pathol. 73, 197-203. <https://doi.org/10.1136/jclinpath-2019-206117>
185. Mutzbauer, G., Maurus, K., Buszello, C. et al. (2018) SYK expression in monomorphic epitheliotropic intestinal T-cell lymphoma. Mod. Pathol. 31, 505-516. <https://doi.org/10.1038/modpathol.2017.145>
186. Nagato, T., Ohkuri, T., Ohara, K. et al. (2017) Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol. Immunother. 66, 877-890. <https://doi.org/10.1007/s00262-017-1987-x>
187. Nanda, R., Chow, L. Q., Dees, E. C. et al. (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J. Clin. Oncol. 34, 2460-2467. <https://doi.org/10.1200/JCO.2015.64.8931>
188. Nawa, Y., Takenaka, K., Shinagawa, K. et al. (1999) Successful treatment of advanced natural killer cell lymphoma with high-dose chemotherapy and syngeneic peripheral blood stem cell transplantation. Bone Marrow Transplant. 23, 1321-1322. <https://doi.org/10.1038/sj.bmt.1701803>
189. Neuwelt, A., Al-Juhaishi, T., Davila, E. et al. (2020) Enhancing antitumor immunity through checkpoint blockade as a therapeutic strategy in T-cell lymphomas. Blood Adv. 4, 4256-4266. <https://doi.org/10.1182/bloodadvances.2020001966>
190. Nguyen, H. H., Bui, K. C., Nguyen, T. M. L. et al. (2023) The safety of CAR-T cells and PD-1 antibody combination on an experimental model. Biochem. Biophys. Res. Commun. 649, 25-31. <https://doi.org/10.1016/j.bbrc.2023.01.096>
191. Ni, D., AlZahrani, F., Smylie, M. (2019) AIHA and pancytopenia as complications of pembrolizumab therapy for metastatic melanoma: a case report. Case Rep. Oncol. 12, 456-465. <https://doi.org/10.1159/000500856>
192. Nie, J., Wang, C., Liu, Y. et al. (2019) Addition of low-dose decitabine to anti–PD-1 antibody camrelizumab in relapsed/refractory classical Hodgkin lymphoma. J. Clin. Oncol. 37, 1479-1489. <https://doi.org/10.1200/JCO.18.02151>
193. Niu, J., Maurice-Dror, C., Lee, D. H. et al. (2022) First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer(☆). Ann. Oncol. 33, 169-180. <https://doi.org/10.1016/j.annonc.2021.11.002>
194. O’Connor, O. A., Horwitz, S., Masszi, T. et al. (2015) Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J. Clin. Oncol. 33, 2492-2499. <https://doi.org/10.1200/JCO.2014.59.2782>
195. Ohmoto, A., Fuji, S. (2023) Rapid T-cell lymphoma progression associated with immune checkpoint inhibitors. Expert Rev. Hematol. 16, 535-541. <https://doi.org/10.1080/17474086.2023.2215424>
196. Ohue, Y., Nishikawa, H. (2019) Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 110, 2080-2089. <https://doi.org/10.1111/cas.14069>
197. Onaindia, A., de Villambrosía, S. G., Prieto-Torres, L. et al. (2019) DUSP22-rearranged anaplastic lymphomas are cha­racterized by specific morphological features and a lack of cytotoxic and JAK/STAT surrogate markers. Haematologica 104, e158-e162. <https://doi.org/10.3324/haematol.2018.205880>
198. Onishi, A., Fuji, S., Kitano, S. et al. (2022) Prognostic implication of CTLA-4, PD-1, and PD-L1 expression in aggressive adult T-cell leukemia-lymphoma. Ann. Hematol. 101, 799-810. <https://doi.org/10.1007/s00277-022-04760-8>
199. Osorio, J. C., Ni, A., Chaft, J. E. et al. (2017) Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 28, 583-589. <https://doi.org/10.1093/annonc/mdw640>
200. Oyewole-Said, D., Konduri, V., Vazquez-Perez, J. et al. (2020) Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 11, 608024. <https://doi.org/10.3389/fimmu.2020.608024>
201. Palmieri, D. J., Carlino, M. S. (2018) Immune checkpoint inhibitor toxicity. Curr. Oncol. Rep. 20, 72. <https://doi.org/10.1007/s11912-018-0718-6>
202. Panjwani, P. K., Charu, V., DeLisser, M. et al. (2018) Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum. Pathol. 71, 91-99. <https://doi.org/10.1016/j.humpath.2017.10.029>
203. Parrilla Castellar, E. R., Jaffe, E. S., Said, J. W. et al. (2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124, 1473-1480. <https://doi.org/10.1182/blood-2014-04-571091>
204. Pathak, S., Zito, P. M. (2024) Clinical Guidelines for the Staging, Diagnosis, and Management of Cutaneous Malignant Melanoma. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
205. Pellegrino, B., Musolino, A., Tiseo, M. (2017) Anti-PD-1-related cryoglobulinemia during treatment with nivolumab in NSCLC patient. Ann. Oncol. 28, 1405-1406. <https://doi.org/10.1093/annonc/mdx126>
206. Pfeiferova, L., Safarikova, M., Ulrych, J. et al. (2022) Circulating cell-free DNA extraction from liquid biopsy for cancer research. Folia Biol. (Praha) 68, 153-157. <https://doi.org/10.14712/fb2022068040153>
207. Pittaluga, S., Wlodarska, I., Pulford, K. et al. (1997) The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am. J. Pathol. 151, 343-351.
208. Prince, H. M., Duvic, M., Martin, A. et al. (2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 1870-1877. <https://doi.org/10.1200/JCO.2009.26.2386>
209. Prockop, S., Doubrovina, E., Suser, S. et al. (2020) Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J. Clin. Invest. 130, 733-747. <https://doi.org/10.1172/JCI121127>
210. Prokoph, N., Larose, H., Lim, M. S. et al. (2018) Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel) 10, 99. <https://doi.org/10.3390/cancers10040099>
211. Querfeld, C., Leung, S., Myskowski, P. L. et al. (2018) Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol. Res. 6, 900-909. <https://doi.org/10.1158/2326-6066.CIR-17-0270>
212. Querfeld, C., Wu, X., Stiller, T. et al. (2019) Phase 1 results of anti-PD-ligand 1 (durvalumab) and lenalidomide in patients with cutaneous T cell lymphoma and correlation with programmed death ligand 1 expression and gene expression profile. Blood 134, 4024. <https://doi.org/10.1182/blood-2019-126358>
213. Raskov, H., Orhan, A., Christensen, J. P. et al. (2021) Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 124, 359-367. <https://doi.org/10.1038/s41416-020-01048-4>
214. Ratner, L., Waldmann, T. A., Janakiram, M. et al. (2018) Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N. Engl. J. Med. 378, 1947-1948. <https://doi.org/10.1056/NEJMc1803181>
215. Rauch, D. A., Conlon, K. C., Janakiram, M. et al. (2019) Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood 134, 1406-1414. <https://doi.org/10.1182/blood.2019002038>
216. Ribas, A., Puzanov, I., Dummer, R. et al. (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a rando­mised, controlled, phase 2 trial. Lancet Oncol. 16, 908-918. <https://doi.org/10.1016/S1470-2045(15)00083-2>
217. Ribas, A., Wolchok, J. D. (2018) Cancer immunotherapy using checkpoint blockade. Science 359, 1350-1355. <https://doi.org/10.1126/science.aar4060>
218. Rigaud, C., Abbou, S., Minard-Colin, V. et al. (2018) Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr. Blood Cancer 65, <https://doi.org/10.1002/pbc.26902>
219. Rowshanravan, B., Halliday, N., Sansom, D. M. (2018) CTLA-4: a moving target in immunotherapy. Blood 131, 58-67. <https://doi.org/10.1182/blood-2017-06-741033>
220. Rudd, C. E., Schneider, H. (2003) Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat. Rev. Immunol. 3, 544-556. <https://doi.org/10.1038/nri1131>
221. Sadeghi, M., Khodakarami, A., Ahmadi, A. et al. (2022) The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin. Ther. Targets 26, 1057-1071. <https://doi.org/10.1080/14728222.2022.2170781>
222. Safa, H., Johnson, D. H., Trinh, V. A. et al. (2019) Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J. Immunother. Cancer 7, 319. <https://doi.org/10.1186/s40425-019-0774-y>
223. Sakuishi, K., Apetoh, L., Sullivan, J. M. et al. (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187-2194. <https://doi.org/10.1084/jem.20100643>
224. Salim, A., Tapia Rico, G., Shaikh, A. et al. (2021) A systematic review of immune checkpoint inhibitor-related neurological adverse events and association with anti-neuronal autoantibodies. Expert Opin. Biol. Ther. 21, 1237-1251. <https://doi.org/10.1080/14712598.2021.1897101>
225. Sasaki, M., Matsue, K., Takeuchi, M. et al. (2000) Successful treatment of disseminated nasal NK/T-cell lymphoma using double autologous peripheral blood stem cell transplantation. Int. J. Hematol. 71, 75-78.
226. Sauer, N., Janicka, N., Szlasa, W. et al. (2023) TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol. Immunother. 72, 3405-3425. <https://doi.org/10.1007/s00262-023-03516-1>
227. Saulite, I., Ignatova, D., Chang, Y. T. et al. (2020) Blockade of programmed cell death protein 1 (PD-1) in Sézary syndrome reduces Th2 phenotype of non-tumoral T lymphocytes but may enhance tumor proliferation. Oncoimmunology 9, 1738797. <https://doi.org/10.1080/2162402X.2020.1738797>
228. Schöffski, P., Tan, D. S. W., Martín, M. et al. (2022) Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J. Immunother. Cancer 10, e003776. <https://doi.org/10.1136/jitc-2021-003776>
229. Schrader, A., Crispatzu, G., Oberbeck, S. et al. (2018) Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat. Commun. 9, 697. <https://doi.org/10.1038/s41467-017-02688-6>
230. Sekulic, A., Liang, W. S., Tembe, W. et al. (2015) Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion. Mol. Genet. Genomic Med. 3, 130-136. <https://doi.org/10.1002/mgg3.121>
231. Shah, N., Adrianzen Herrera, D., Shah, U. et al. (2019) Unique racial patterns in rare T-cell lymphomas: a national cancer registry analysis from 2001 to 2015. J. Clin. Oncol. 37 (Suppl.15), <https://doi.org/10.1200/JCO.2019.37.15_suppl.e190>
232. Sharpe, A. H., Pauken, K. E. (2018) The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153-167. <https://doi.org/10.1038/nri.2017.108>
233. Sheppard, K. A., Fitz, L. J., Lee, J. M. et al. (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Lett. 574, 37-41. <https://doi.org/10.1016/j.febslet.2004.07.083>
234. Shi, L., Chen, S., Yang, L. et al. (2013) The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 6, 74. <https://doi.org/10.1186/1756-8722-6-74>
235. Shi, Y., Su, H., Song, Y. et al. (2019) Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): a multicentre, single-arm, phase 2 trial. Lancet Haematol. 6, e12-e19. <https://doi.org/10.1016/S2352-3026(18)30192-3>
236. Shi, Y., Wu, J., Wang, Z. et al. (2021) Efficacy and safety of geptanolimab (GB226) for relapsed or refractory peripheral T cell lymphoma: an open-label phase 2 study (Gxplore-002). J. Hematol. Oncol. 14, 12. <https://doi.org/10.1186/s13045-021-01033-1>
237. Shimauchi, T., Kabashima, K., Tokura, Y. (2008) Adult T-cell leukemia/lymphoma cells from blood and skin tumors express cytotoxic T lymphocyte-associated antigen-4 and Foxp3 but lack suppressor activity toward autologous CD8+ T cells. Cancer Sci. 99, 98-106. <https://doi.org/10.1111/j.1349-7006.2007.00646.x>
238. Shirasuna, K., Koelsch, G., Seidel-Dugan, C. et al. (2021) Characterization of ASP8374, a fully-human, antagonistic anti-TIGIT monoclonal antibody. Cancer Treat. Res. Commun. 28, 100433. <https://doi.org/10.1016/j.ctarc.2021.100433>
239. Shitara, K., Ajani, J. A., Moehler, M. et al. (2022) Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 603, 942-948. <https://doi.org/10.1038/s41586-022-04508-4>
240. Silva, R. C. M. C., Lopes, M. F., Travassos, L. H. (2023) Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. Cancer Pathog. Ther. 1, 76-86. <https://doi.org/10.1016/j.cpt.2022.11.001>
241. Smith, S. D., Till, B. G., Shadman, M. S. et al. (2020) Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. Br. J. Haematol. 189, 1119-1126. <https://doi.org/10.1111/bjh.16494>
242. Stadler, R., Romero, P. O., Bagot, M. et al. (2021) Phase II trial of atezolizumab (anti-PD-L1) in the treatment of stage IIB–IVB mycosis fungoides/Sézary syndrome patients relapsed/refractory after a previous systemic treatment (PARCT). Eur. J. Cancer 156, S22-S23. <https://doi.org/10.1016/S0959-8049(21)00668-7>
243. Stuver, R., Moskowitz, A. J. (2023) Therapeutic advances in relapsed and refractory peripheral T-cell lymphoma. Cancers (Basel) 15, 589. <https://doi.org/10.3390/cancers15030589>
244. Su, S., Zhao, J., Xing, Y. et al. (2018) Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442-457 e23. <https://doi.org/10.1016/j.cell.2018.09.007>
245. Sun, C., Mezzadra, R., Schumacher, T. N. (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48, 434-452. <https://doi.org/10.1016/j.immuni.2018.03.014>
246. Sun, P., Wang, Y., Yang, H. et al. (2022) Combination of anti-PD-1 antibody, anlotinib and pegaspargase “sandwich” with radiotherapy in localized natural killer/T cell lymphoma. Front. Immunol. 13, 766200. <https://doi.org/10.3389/fimmu.2022.766200>
247. Suzuki, R., Yamaguchi, M., Izutsu, K. et al. (2011) Prospective measurement of Epstein-Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood 118, 6018-6022. <https://doi.org/10.1182/blood-2011-05-354142>
248. Swetter, S. M., Tsao, H., Bichakjian, C. K. et al. (2019) Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol. 80, 208-250. <https://doi.org/10.1016/j.jaad.2018.08.055>
249. Tabanelli, V., Corsini, C., Fiori, S. et al. (2019) Recurrent PDL1 expression and PDL1 (CD274) copy number alterations in breast implant-associated anaplastic large cell lymphomas. Hum. Pathol. 90, 60-69. <https://doi.org/10.1016/j.humpath.2019.05.007>
250. Tadokoro, T., Keshino, E., Makiyama, A. et al. (2016) Acute lymphocytic myocarditis with anti-PD-1 antibody nivolumab. Circ. Heart Fail. 9, e003514. <https://doi.org/10.1161/CIRCHEARTFAILURE.116.003514>
251. Takeuchi, M., Miyoshi, H., Ohshima, K. (2021) Tumor microenvironment of adult T-cell leukemia/lymphoma. J. Clin. Exp. Hematop. 61, 202-209. <https://doi.org/10.3960/jslrt.21007>
252. Tao, R., Fan, L., Song, Y. et al. (2019) Sintilimab for relapsed/refractory (r/r) extranodal NK/T-cell lymphoma (ENKTL): a multicenter, single-arm, phase 2 trial (ORIENT-4). J. Clin. Oncol. 37, 7504. <https://doi.org/10.1200/JCO.2019.37.15_suppl.7504>
253. Teufel, A., Zhan, T., Härtel, N. et al. (2019) Management of immune related adverse events induced by immune checkpoint inhibition. Cancer Lett. 456, 80-87. <https://doi.org/10.1016/j.canlet.2019.04.018>
254. Thandra, K. C., Barsouk, A., Saginala, K. et al. (2021) Epidemiology of non-Hodgkin’s lymphoma. Med. Sci. (Basel) 9, 5.
255. Tian, Y., Gao, A., Wen, Q. et al. (2020) Immune-related neurological toxicities of PD-1/PD-L1 inhibitors in cancer patients: a systematic review and meta-analysis. Front. Immunol. 11, 595655. <https://doi.org/10.3389/fimmu.2020.595655>
256. Toes, R. E., Ossendorp, F., Offringa, R. et al. (1999) CD4 T cells and their role in antitumor immune responses. J. Exp. Med. 189, 753-756. <https://doi.org/10.1084/jem.189.5.753>
257. Torossian, A., Broin, N., Frentzel, J. et al. (2019) Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death. Haematologica 104, 1428-1439. <https://doi.org/10.3324/haematol.2017.181966>
258. Tsuyama, N., Sakamoto, K., Sakata, S. et al. (2017) Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J. Clin. Exp. Hematop. 57, 120-142. <https://doi.org/10.3960/jslrt.17023>
259. Twomey, J. D., Zhang, B. (2021) Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23, 39. <https://doi.org/10.1208/s12248-021-00574-0>
260. Vallois, D., Dobay, M. P. D., Morin, R. D. et al. (2016) Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128, 1490-1502. <https://doi.org/10.1182/blood-2016-02-698977>
261. Van Arnam, J. S., Lim, M. S., Elenitoba-Johnson, K. S. J. (2018) Novel insights into the pathogenesis of T-cell lymphomas. Blood 131, 2320-2330. <https://doi.org/10.1182/blood-2017-11-764357>
262. van Eijs, M. J. M., van der Wagen, L. E., Mous, R. et al. (2023) Hematologic malignancies following immune checkpoint inhibition for solid tumors. Cancer Immunol. Immunother. 72, 249-255. <https://doi.org/10.1007/s00262-022-03230-4>
263. Varricchi, G., Marone, G., Mercurio, V. et al. (2018) Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr. Med. Chem. 25, 1327-1339. <https://doi.org/10.2174/0929867324666170407125017>
264. Veloza, L., Cavalieri, D., Missiaglia, E. et al. (2022) Monomorphic epitheliotropic intestinal T-cell lymphoma comprises morphologic and genomic heterogeneity impacting outcome. Haematologica 108, 181-195. <https://doi.org/10.3324/haematol.2022.281226>
265. Vogrig, A., Muńiz-Castrillo, S., Farina, A. et al. (2022) How to diagnose and manage neurological toxicities of immune checkpoint inhibitors: an update. J. Neurol. 269, 1701-1714. <https://doi.org/10.1007/s00415-021-10870-6>
266. von Tresckow, B., Fanale, M., Ardeshna, K. M. et al. (2019) Patient-reported outcomes in KEYNOTE-087, a phase 2 study of pembrolizumab in patients with classical Hodgkin lymphoma. Leuk. Lymphoma 60, 2705-2711. <https://doi.org/10.1080/10428194.2019.1602262>
267. Vose, J., Armitage, J., Weisenburger, D. (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J. Clin. Oncol. 26, 4124-4130.
268. Voskens, C. J., Goldinger, S. M., Loquai, C. et al. (2013) The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 8, e53745. <https://doi.org/10.1371/journal.pone.0053745>
269. Wai, C. M. M., Chen, S., Phyu, T. et al. (2022) Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica 107, 1864-1879. <https://doi.org/10.3324/haematol.2021.280003>
270. Waldman, A. D., Fritz, J. M., Lenardo, M. J. (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651-668. <https://doi.org/10.1038/s41577-020-0306-5>
271. Walker, L. S., Sansom, D. M. (2015) Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 36, 63-70. <https://doi.org/10.1016/j.it.2014.12.001>
272. Wang, D. Y., Salem, J. E., Cohen, J. V. et al. (2018) Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721-1728. <https://doi.org/10.1001/jamaoncol.2018.3923>
273. Wang, H., Wang, L., Liu, W. J. et al. (2016) High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients. Oncotarget 7, 33035-33045. <https://doi.org/10.18632/oncotarget.8847>
274. Wang, L., Wang, H., Li, P. F. et al. (2015) CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann. Hematol. 94, 1381-1388. <https://doi.org/10.1007/s00277-015-2359-2>
275. Wang, L., Wang, Z. H., Chen, X. Q. et al. (2013) First-line combination of gemcitabine, oxaliplatin, and L-asparaginase (GELOX) followed by involved-field radiation therapy for patients with stage IE/IIE extranodal natural killer/T-cell lymphoma. Cancer 119, 348-355. <https://doi.org/10.1002/cncr.27752>
276. Wartewig, T., Kurgyis, Z., Keppler, S. et al. (2017) PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552, 121-125. <https://doi.org/10.1038/nature24649>
277. Webb, G. J., Hirschfield, G. M., Lane, P. J. (2016) OX40, OX40L and autoimmunity: a comprehensive review. Clin. Rev. Allergy Immunol. 50, 312-332. <https://doi.org/10.1007/s12016-015-8498-3>
278. Willemze, R., Cerroni, L., Kempf, W. et al. (2019) The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133, 1703-1714. <https://doi.org/10.1182/blood-2018-11-881268>
279. Willemze, R., Hodak, E., Zinzani, P. L. et al. (2018) Primary cutaneous lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Approved by the ESMO Guidelines Committee: December 2006, last update January 2018. This publication supersedes the previously published version – Ann. Oncol. 2013; 24 (Suppl. 6): vi149–vi154. Ann. Oncol. 29, iv30-iv40.
280. Wlodarski, M. W., Quimper, M., Gondek, L. et al. (2004) Study of CTLA-4 regulation in large granular lymphocyte leukemia cells and their normal counterparts. Blood 104, 3871. <https://doi.org/10.1182/blood.V104.11.3871.3871>
281. Wong, H. K., Wilson, A. J., Gibson, H. M. et al. (2006) Increased expression of CTLA-4 in malignant T cells from patients with mycosis fungoides – cutaneous T-cell lymphoma. J. Invest. Dermatol. 126, 212-219. <https://doi.org/10.1038/sj.jid.5700029>
282. Xu, C., Chen, Y. P., Du, X. J. et al. (2018a) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363, k4226. <https://doi.org/10.1136/bmj.k4226>
283. Xu, X., Huang, Z., Zheng, L. et al. (2018b) The efficacy and safety of anti-PD-1/PD-L1 antibodies combined with chemotherapy or CTLA4 antibody as a first-line treatment for advanced lung cancer. Int. J. Cancer 142, 2344-2354. <https://doi.org/10.1002/ijc.31252>
284. Yabe, M., Medeiros, L. J., Tang, G. (2016) Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am. J. Surg. Pathol. 40, 676-688. <https://doi.org/10.1097/PAS.0000000000000614>
285. Yamaguchi, M., Kita, K., Miwa, H. et al. (1995) Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer 76, 2351-2356. <https://doi.org/10.1002/1097-0142(19951201)76:11<2351::AID-CNCR2820761125>3.0.CO;2-1>
286. Yamaguchi, M., Suzuki, R., Oguchi, M. (2018) Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood 131, 2528-2540. <https://doi.org/10.1182/blood-2017-12-791418>
287. Yan, Z., Yao, S., Liu, Y. et al. (2020) Durable response to sintilimab and chidamide in a patient with pegaspargase- and immunotherapy-resistant NK/T-cell lymphoma: case report and literature review. Front. Oncol. 10, 608304. <https://doi.org/10.3389/fonc.2020.608304>
288. Yang, J., Epling-Burnette, P. K., Painter, J. S. et al. (2008) Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. Blood 111, 1610-1616. <https://doi.org/10.1182/blood-2007-06-093823>
289. Yhim, H. Y., Kim, J. S., Mun, Y. C. et al. (2015) Clinical outcomes and prognostic factors of up-front autologous stem cell transplantation in patients with extranodal natural killer/T cell lymphoma. Biol. Blood Marrow Transplant. 21, 1597-1604. <https://doi.org/10.1016/j.bbmt.2015.05.003>
290. Yong, W., Zheng, W., Zhang, Y. et al. (2003) L-asparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int. J. Hematol. 78, 163-167. <https://doi.org/10.1007/BF02983387>
291. Yoo, H. Y., Kim, P., Kim, W. S. et al. (2016) Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica 101, 757-763. <https://doi.org/10.3324/haematol.2015.139253>
292. You, J. Y., Chi, K. H., Yang, M. H. et al. (2004) Radiation therapy versus chemotherapy as initial treatment for localized nasal natural killer (NK)/T-cell lymphoma: a single institute survey in Taiwan. Ann. Oncol. 15, 618-625. <https://doi.org/10.1093/annonc/mdh143>
293. Younes, A., Santoro, A., Shipp, M. et al. (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 17, 1283-1294. <https://doi.org/10.1016/S1470-2045(16)30167-X>
294. Yu, X., Harden, K., Gonzalez, L. C. et al. (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48-57. <https://doi.org/10.1038/ni.1674>
295. Yun, N. K., Alrifai, T., Miller, I. J. et al. (2021) Pembrolizumab-induced autoimmune haemolytic anemia in a patient with chronic lymphocytic leukaemia successfully treated with ibrutinib. BMJ Case Rep. 14, e245350. <https://doi.org/10.1136/bcr-2021-245350>
296. Zain, J. M., Hanona, P. (2021) Aggressive T-cell lymphomas: 2021 updates on diagnosis, risk stratification and management. Am. J. Hematol. 96, 1027-1046. <https://doi.org/10.1002/ajh.26270>
297. Zhang, N., Bevan, M. J. (2011) CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161-168. <https://doi.org/10.1016/j.immuni.2011.07.010>
298. Zhang, N., Dalal, M. R. (2019) PRO66 incidence and prevalence of T-cell lymphoma in the EMA member states: methodology for estimation in rare malignancies of CTCL and PTCL. Value Health 22, S853. <https://doi.org/10.1016/j.jval.2019.09.2396>
299. Zhang, W., Shen, H., Zhang, Y. et al. (2019) Circulating PD-1 (+) cells may participate in immune evasion in peripheral T-cell lymphoma and chidamide enhance antitumor activity of PD-1 (+) cells. Cancer Med. 8, 2104-2113. <https://doi.org/10.1002/cam4.2097>
300. Zhang, Y., Cui, Y., Li, Y. et al. (2023) Immune checkpoint inhibitor-induced primary hyperparathyroidism in a small-cell lung cancer patient: a case report. Medicina (Kaunas) 59, 215. <https://doi.org/10.3390/medicina59020215>
301. Zhang, Y., Zhang, Y., Gu, W. et al. (2014) TH1/TH2 cell differentiation and molecular signals. Adv. Exp. Med. Biol. 841, 15-44. <https://doi.org/10.1007/978-94-017-9487-9_2>
302. Zhang, Y., Zheng, J. (2020) Functions of immune checkpoint molecules beyond immune evasion. Adv. Exp. Med. Biol. 1248, 201-226. <https://doi.org/10.1007/978-981-15-3266-5_9>
303. Zhao, S., Sun, M., Meng, H. et al. (2019) TLR4 expression correlated with PD-L1 expression indicates a poor prognosis in patients with peripheral T-cell lymphomas. Cancer Manag. Res. 11, 4743-4756. <https://doi.org/10.2147/CMAR.S203156>
304. Zinzani, P. L., Santoro, A., Gritti, G. et al. (2019) Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: efficacy and safety from the phase II CheckMate 436 study. J. Clin. Oncol. 37, 3081-3089. <https://doi.org/10.1200/JCO.19.01492>
305. Zöphel, D., Angenendt, A., Kaschek, L. et al. (2022) Faster cytotoxicity with age: increased perforin and granzyme levels in cytotoxic CD8+ T cells boost cancer cell elimination. Aging Cell 21, e13668. <https://doi.org/10.1111/acel.13668>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive