Fol. Biol. 2024, 70, 123-151
https://doi.org/10.14712/fb2024070030123
Immune Checkpoints and Their Inhibition in T-Cell Lymphomas
References
1. 2008) Incidence and outcomes of the peripheral T-cell lymphoma subtypes in the United States. Leuk. Lymphoma 49, 2099-2107.
< , A. N., Shenoy, P. J., Lechowicz, M. J. et al. (https://doi.org/10.1080/10428190802455867>
2. 2016) Racial patterns of peripheral T-cell lymphoma incidence and survival in the United States. J. Clin. Oncol. 34, 963-971.
< , S. V., Newcomb, P. A., Shustov, A. R. (https://doi.org/10.1200/JCO.2015.63.5540>
3. 2020) AVAIL-T: A phase 2a trial of avelumab, and anti-PD-L1 antibody, in relapsed and refractory peripheral T-cell lymphoma (PTCL). Blood 136, 18-19.
< , M. J., Gaskell, C., Jackson, A. E. et al. (https://doi.org/10.1182/blood-2020-136061>
4. 2009) Neutropenia in a patient treated with ipilimumab (anti-CTLA-4 antibody). J. Immunother. 32, 322-324.
< , M., Waller, E. K., Jaye, D. L. et al. (https://doi.org/10.1097/CJI.0b013e31819aa40b>
5. 2019) Immune checkpoint inhibitor-induced Type 1 diabetes: a systematic review and meta-analysis. Diabet. Med. 36, 1075-1081.
< , H. K., Kahramangil, D., Sarwal, A. et al. (https://doi.org/10.1111/dme.14050>
6. 2015) Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: a longitudinal analysis of the National Cancer Data Base from 1998 to 2011. Am. J. Hematol. 90, 790-795.
< , M., Habermann, T. M., Cerhan, J. R. et al. (https://doi.org/10.1002/ajh.24086>
7. 2022) The 5th edition of the World Health Organization classification of haematolymphoid tumors: lymphoid neoplasms. Leukemia 36, 1720-1748.
< , R., Amador, C., Anagnostopoulos, I. et al. (https://doi.org/10.1038/s41375-022-01620-2>
8. 2020) T-cell lymphoma secondary to checkpoint inhibitor therapy. J. Immunother. Cancer 8, e000104.
< , K., Ensor, J., Pingali, S. R. et al. (https://doi.org/10.1136/jitc-2019-000104>
9. 2019) Proposed diagnostic and treatment paradigm for high-grade neurological complications of immune checkpoint inhibitors. Neurooncol. Pract. 6, 340-345.
, D., Beecher, G., Nathoo, N. et al. (
10. 1998) Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s lymphoma classification project. Ann. Oncol. 9, 717-720.
< , J. R., Armitage, J. O., Weisenburger, D. D. (https://doi.org/10.1023/A:1008265532487>
11. 2011) Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin. Cancer Res. 17, 4232-4344.
< , D. J., Yamada, R. E., Said, J. et al. (https://doi.org/10.1158/1078-0432.CCR-10-2660>
12. 2020) Regulation of PD-L1 expression by NF-κB in cancer. Front. Immunol. 11, 584626.
< , F., Natalini, A., Garassino, M. C. et al. (https://doi.org/10.3389/fimmu.2020.584626>
13. 2019) Divergent LAG-3 versus BTLA, TIGIT, and FCRL3 expression in Sézary syndrome. Leuk. Lymphoma 60, 1899-1907.
< , F., Ignatova, D., Schlaepfer, T. et al. (https://doi.org/10.1080/10428194.2018.1564827>
14. 2018) Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J. Clin. Oncol. 36, 1428-1439.
< , P., Engert, A., Younes, A. et al. (https://doi.org/10.1200/JCO.2017.76.0793>
15. 2019) Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J. Clin. Oncol. 37, 3291-3299.
< , P., Rodig, S., Melnichenko, V. et al. (https://doi.org/10.1200/JCO.19.01389>
16. 2021) Immune-checkpoint inhibitors in B-cell lymphoma. Cancers (Basel) 13, 214.
< , M., Santos, J. C., Fernández-Serrano, M. et al. (https://doi.org/10.3390/cancers13020214>
17. 2023) Epidemiology of mature T/NK-cell lymphomas in Germany – a representative cross-sectional study based on SHI claims data. J. Dtsch. Dermatol. Ges. 21, 1320-1327.
, C., Dobos, G., Zech, I. M. et al. (
18. 2022) T-cell prolymphocytic leukaemia associated with immune checkpoint inhibitor (pembrolizumab). BMJ Case Rep. 15, e245603.
< , A. R., Elmanaseer, O., Wrzesinski, S. et al. (https://doi.org/10.1136/bcr-2021-245603>
19. 2021) Prior anti-PD-1 therapy as a risk factor for life-threatening peri-engraftment respiratory distress syndrome in patients undergoing autologous stem cell transplantation. Bone Marrow Transplant. 56, 1151-1158.
< , B., Wang, X. X., Gao, Y. et al. (https://doi.org/10.1038/s41409-020-01164-y>
20. 2021) Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102-2114.
< , D. F., Witjes, J. A., Gschwend, J. E. et al. (https://doi.org/10.1056/NEJMoa2034442>
21. 2015) Complete regression of mycosis fungoides after ipilimumab therapy for advanced melanoma. JAAD Case Rep. 1, 99-100.
< , G., Bergman, R. (https://doi.org/10.1016/j.jdcr.2015.02.009>
22. 2021) T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness. Genes (Basel) 12, 1118.
< , V., Arniani, S., Pierini, V. et al. (https://doi.org/10.3390/genes12081118>
23. 2020) Stat3 mutations impact on overall survival in large granular lymphocyte leukemia: a single-center experience of 205 patients. Leukemia 34, 1116-1124.
< , G., Teramo, A., Calabretto, G. et al. (https://doi.org/10.1038/s41375-019-0644-0>
24. 2021) Differentiation and regulation of TH cells: a balancing act for cancer immunotherapy. Front. Immunol. 12, 669474.
< , A., Ramamoorthi, G., Albert, G. et al. (https://doi.org/10.3389/fimmu.2021.669474>
25. 2022) The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 13, 22-40.
< , A. M. (https://doi.org/10.3390/clinpract13010003>
26. 2006) Tr1 cells: from discovery to their clinical application. Semin. Immunol. 18, 120-127.
< , M., Gregori, S., Bacchetta, R. et al. (https://doi.org/10.1016/j.smim.2006.01.007>
27. 2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687-692.
< , G. L., Gladney, W. L. (https://doi.org/10.1158/1078-0432.CCR-14-1860>
28. 2000) Primary and secondary cutaneous CD30+ lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 95, 3653-3661.
< , M. W., Geelen, F. A. M. J., van Voorst Vader, P. C. et al. (https://doi.org/10.1182/blood.V95.12.3653>
29. 1998) ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 91, 2076-2084.
< , D., Meguerian-Bedoyan, Z., Lamant, L. et al. (https://doi.org/10.1182/blood.V91.6.2076>
30. 2019) Tumor microenvironment in T-cell lymphomas. Cancer Treat. Res. 176, 69-82.
< , N. N., Ansell, S. M. (https://doi.org/10.1007/978-3-319-99716-2_3>
31. 2022) Nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma: modest activity and cases of hyperprogression. J. Immunother. Cancer 10, e004984.
< , N. N., Kim, H. J., Pederson, L. D. et al. (https://doi.org/10.1136/jitc-2022-004984>
32. 2019) A phase II study of nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma. Blood 134, 467.
< , N. N., Pederson, L. D., Atherton, P. et al. (https://doi.org/10.1182/blood-2019-126194>
33. 2021) Metastatic melanoma patient outcomes since introduction of immune checkpoint inhibitors in England between 2014 and 2018. Int. J. Cancer 148, 868-875.
< , R., Smittenaar, R., Lawton, S. et al. (https://doi.org/10.1002/ijc.33266>
34. 2014) Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798-808.
< , C. M., Gottschalk, S., Torrano, V. et al. (https://doi.org/10.1200/JCO.2013.51.5304>
35. 2023) Single-cell analysis of Sézary syndrome reveals novel markers and shifting gene profiles associated with treatment. Blood Adv. 7, 321-335.
< , N., Severson, K. J., Henderson, N. et al. (https://doi.org/10.1182/bloodadvances.2021005991>
36. 2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98-106.
< , E. I., Desai, A. (https://doi.org/10.1097/COC.0000000000000239>
37. 2020a) Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct.Target. Ther. 5, 289.
< , J., Liu, P., Huang, H. et al. (https://doi.org/10.1038/s41392-020-00331-3>
38. 2020b) Safety and preliminary efficacy of sintilimab plus P-gemox (pegaspargase, gemcitabine and oxaliplatin) regimen as first-line treatment for patients with advanced extranodal natural killer/T cell lymphoma, nasal type: an open-label, multicenter, phase 2 study. Blood 136, 26-27.
< , Q., Huang, H., Liu, P. et al. (https://doi.org/10.1182/blood-2020-136949>
39. 2017) Tuning cancer fate: the unremitting role of host immunity. Open Biol. 7, 170006.
< , B., Molon, B., Viola, A. (https://doi.org/10.1098/rsob.170006>
40. 2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116, 767-771.
< , J. J., Clark, R. A., Watanabe, R. et al. (https://doi.org/10.1182/blood-2009-11-251926>
41. 2022) The international consensus classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood 140, 1229-1253.
< , E., Jaffe, E. S., Cook, J. R. et al. (https://doi.org/10.1182/blood.2022015851>
42. 2019) Dynamic host immune response in virus-associated cancers. Commun. Biol. 2, 109.
< , S., Wylie, K. M., Wyczalkowski, M. A. et al. (https://doi.org/10.1038/s42003-019-0352-3>
43. 2012) Differential expression of programmed death-1 (PD-1) in Sézary syndrome and mycosis fungoides. Arch. Dermatol. 148, 1379-1385.
< , F., Jansen, P. M., Vermeer, M. H. et al. (https://doi.org/10.1001/archdermatol.2012.2089>
44. 2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35, 474-483.
< , A., Lyberi, M., Chatzilymperis, G. et al. (https://doi.org/10.1002/biof.62>
45. 2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 19, 3462-3473.
< , B. J., Chapuy, B., Ouyang, J. et al. (https://doi.org/10.1158/1078-0432.CCR-13-0855>
46. 2013) Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol. Immunother. 62, 203-216.
< , G., Emens, L. A. (https://doi.org/10.1007/s00262-012-1388-0>
47. 2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227-242.
< , L., Flies, D. B. (https://doi.org/10.1038/nri3405>
48. 2022) Immune checkpoint inhibitors in peripheral T-cell lymphoma. Front. Pharmacol. 13, 869488.
< , X., Wu, W., Wei, W. et al. (https://doi.org/10.3389/fphar.2022.869488>
49. 2021) CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression. Open Life Sci. 16, 909-919.
< , Y., Li, M., Cao, J. et al. (https://doi.org/10.1515/biol-2021-0094>
50. 2017) CTLA-4, an essential immune-checkpoint for T-cell activation. Curr. Top. Microbiol. Immunol. 410, 99-126.
, S. (
51. 2015) Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 47, 1011-1019.
< , J., Goh, G., Walradt, T. et al. (https://doi.org/10.1038/ng.3356>
52. 2019) Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 37, 1470-1478.
< , H. C., Ros, W., Delord, J. P. et al. (https://doi.org/10.1200/JCO.18.01265>
53. 2020) Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leuk. Lymphoma 61, 808-819.
< , J. I., Iwatsuki, K., Ko, Y. H. e al. (https://doi.org/10.1080/10428194.2019.1699080>
54. 2014) Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J. Hematol. Oncol. 7, 11.
< , B., Pro, B., Prince, H. M. et al. (https://doi.org/10.1186/1756-8722-7-11>
55. 2021) Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin. Cancer Res. 27, 3620-3629.
< , G., Gelderblom, H., Mach, N. et al. (https://doi.org/10.1158/1078-0432.CCR-20-4746>
56. 2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952-4963.
< , L., Rickman, D. S., Thielen, C. et al. (https://doi.org/10.1182/blood-2006-10-055145>
57. 2021) PD1 in Sézary syndrome: a repressor of cell survival sometimes lost during progression, but a new target using depleting antibodies? Eur. J. Cancer 156, S14-S15.
< , A., Giustiniani, J., Pelletier, L. et al. (https://doi.org/10.1016/S0959-8049(21)00652-3>
58. 2011) Hemophilia A induced by ipilimumab. N. Engl. J. Med. 365, 1747-1748.
< , J., Mateus, C., Lambert, T. (https://doi.org/10.1056/NEJMc1110923>
59. 2019) Transcriptional analysis distinguishes breast implant-associated anaplastic large cell lymphoma from other peripheral T-cell lymphomas. Mod. Pathol. 32, 216-230.
< , A., De Cecco, L., Piccaluga, P. P. et al. (https://doi.org/10.1038/s41379-018-0130-7>
60. 2020) Epidemiology of cutaneous T-cell lymphomas: a systematic review and meta-analysis of 16,953 patients. Cancers (Basel) 12, 2921.
< , G., Pohrt, A., Ram-Wolff, C. et al. (https://doi.org/10.3390/cancers12102921>
61. 2021) PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345-362.
< , D. B., Bhalla, S., Beasley, M. B. et al. (https://doi.org/10.1038/s41571-021-00473-5>
62. 2006) Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51-81.
< , C. G., Jaffee, E., Pardoll, D. M. (https://doi.org/10.1016/S0065-2776(06)90002-9>
63. 2020) Effective treatment with PD-1 antibody, chidamide, etoposide, and thalidomide (PCET) for relapsed/refractory natural killer/T-cell lymphoma: a report of three cases. Onco Targets Ther. 13, 7189-7197.
< , L., Zhang, L., Li, L. et al. (https://doi.org/10.2147/OTT.S262039>
64. 2020) Angioimmunoblastic T-cell lymphoma associated with immune checkpoint inhibitor treatment. JAAD Case Rep. 6, 1264-1267.
< , T. C., Nair, R., Torres-Cabala, C. et al. (https://doi.org/10.1016/j.jdcr.2020.09.020>
65. 2020) New insight in endocrine-related adverse events associated to immune checkpoint blockade. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101370.
< , G., Ferrari, S. M., Galdiero, M. R. et al. (https://doi.org/10.1016/j.beem.2019.101370>
66. 2009) Anti-CTLA4 antibody-induced lupus nephritis. N. Engl. J. Med. 361, 211-212.
< , F., El Karoui, K., Knebelmann, B. (https://doi.org/10.1056/NEJMc0904283>
67. 2008) Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 68, 3785-3794.
< , V. R., Loboda, A., Paweletz, C. P. et al. (https://doi.org/10.1158/0008-5472.CAN-07-6091>
68. 2019) CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J. Cell. Physiol. 234, 8509-8521.
< , B., Najafi, M., Mortezaee, K. (https://doi.org/10.1002/jcp.27782>
69. 2018) Expression of TIM-3 and LAG-3 in extranodal NK/T cell lymphoma, nasal type. Histol. Histopathol. 33, 307-315.
, Y., Zhong, M., Liu, Y. et al. (
70. 2020) Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer. Cochrane Database Syst. Rev. 12, Cd013257.
, R., Imbimbo, M., Malouf, R. et al. (
71. 2018) Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr. Opin. Oncol. 30, 332-337.
< , A. S., Feng, M., Zain, J. M. et al. (https://doi.org/10.1097/CCO.0000000000000468>
72. 2022) Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973-1985.
< , P. M., Spicer, J., Lu, S. et al. (https://doi.org/10.1056/NEJMoa2202170>
73. 2015) High-dose therapy and autologous stem cell transplantation for extra-nodal NK/T lymphoma in patients from the Western hemisphere: a study from the European Society for Blood and Marrow Transplantation. Leuk. Lymphoma 56, 3295-3300.
< , C. P., Boumendil, A., Schmitz, N. et al. (https://doi.org/10.3109/10428194.2015.1037764>
74. 2020) Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B 10, 414-433.
< , Y., Lin, Q., Zhang, Z. et al. (https://doi.org/10.1016/j.apsb.2019.08.010>
75. 2018) Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 19, 521-536.
< , M. C., Cho, B. C., Kim, J. H. et al. (https://doi.org/10.1016/S1470-2045(18)30144-X>
76. 2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018-2028.
< , E. B., Rizvi, N. A., Hui, R. et al. (https://doi.org/10.1056/NEJMoa1501824>
77. 2018) Novel immunotherapies for T cell lymphoma and leukemia. Curr. Hematol. Malig. Rep. 13, 494-506.
< , P., Moskowitz, A. J., De Paola, N. E. K. et al. (https://doi.org/10.1007/s11899-018-0480-8>
78. 2013) Impaired proteasome function activates GATA3 in T cells and upregulates CTLA-4: relevance for Sézary syndrome. J. Invest. Dermatol. 133, 249-257.
< , H. M., Mishra, A., Chan, D. V. et al. (https://doi.org/10.1038/jid.2012.265>
79. 2003) Expression of T-cell activation marker CD134 (OX40) in lymphomatoid papulosis. Br. J. Dermatol. 148, 885-891.
< , R., Rossen, K. (https://doi.org/10.1046/j.1365-2133.2003.05286.x>
80. 2021) Expression and prognostic significance of PD-L2 in diffuse large B-cell lymphoma. Front. Oncol. 11, 664032.
< , Q., Li, J., Chen, Z. et al. (https://doi.org/10.3389/fonc.2021.664032>
81. 2021) COM902, a novel therapeutic antibody targeting TIGIT augments anti-tumor T cell function in combination with PVRIG or PD-1 pathway blockade. Cancer Immunol. Immunother. 70, 3525-3540.
< , K., Kumar, S., Logronio, K. et al. (https://doi.org/10.1007/s00262-021-02921-8>
82. 2002) CTLA-4 engagement regulates NF-κB activation in vivo. Eur. J. Immunol. 32, 2095-2104.
< , H., Hwang, K. W., Palucki, D. A. et al. (https://doi.org/10.1002/1521-4141(200208)32:8<2095::AID-IMMU2095>3.0.CO;2-E>
83. 2016) Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 17, 596-608.
< , M. R., Pulverer, W. et al. (https://doi.org/10.1016/j.celrep.2016.09.018>
84. 2021) Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Ann. Transl. Med. 9, 1037.
< , H., Sampat, D., Goyal, G. (https://doi.org/10.21037/atm-20-6833>
85. 2017) Emerging insights on the pathogenesis and treatment of extranodal NK/T cell lymphomas (ENKTL). Discov. Med. 23, 189-199.
, B. M., Coleman, C., Gru, A. A. et al. (
86. 2016) Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT): an update on epidemiology, clinical presentation, and natural history in North American and European cases. Curr. Hematol. Malig. Rep. 11, 514-527.
< , B. M., Pan, Z., Gru, A. A. et al. (https://doi.org/10.1007/s11899-016-0355-9>
87. 2022) Granzymes: the molecular executors of immune-mediated cytotoxicity. Int. J. Mol. Sci. 23, 1833.
< , Z. L. Z., Slansky, J. E. (https://doi.org/10.3390/ijms23031833>
88. 2021) VISTA and PD-L1 synergistically predict poor prognosis in patients with extranodal natural killer/T-cell lymphoma. Oncoimmunology 10, 1907059.
< , H.-X., Gao, Y., Fu, J.-C. et al. (https://doi.org/10.1080/2162402X.2021.1907059>
89. 2016) Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci. 107, 1193-1197.
< , Y., Rivard, C. J., Rozeboom, L. et al. (https://doi.org/10.1111/cas.12986>
90. 2019) Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133, 1664-1676.
< , T. B., Bouska, A., Yu, J. et al. (https://doi.org/10.1182/blood-2018-09-872549>
91. 2016) Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann. Intern. Med. 165, 607-608.
< , H., Lang, P., Woessmann, W. (https://doi.org/10.7326/L16-0037>
92. 2016) Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50.
< , L., Ott, P. A., Hodi, F. S. et al. (https://doi.org/10.1186/s40425-016-0152-y>
93. 2020) Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N. Engl. J. Med. 383, 1328-1339.
< , R. S., Giaccone, G., de Marinis, F. et al. (https://doi.org/10.1056/NEJMoa1917346>
94. 2004) A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood 104, 328-335.
< , M., Khoury, J. D., Washington, L. T. et al. (https://doi.org/10.1182/blood-2004-01-0002>
95. 2020) CD5 CAR T-cells for treatment of patients with relapsed/refractory CD5 expressing T-cell lymphoma demonstrates safety and anti-tumor activity. Biol. Blood Marrow Transplant. 26, S237.
< , L., Rouce, R. H., Smith, T. S. et al. (https://doi.org/10.1016/j.bbmt.2019.12.482>
96. 2019) Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies. Blood 134, 199.
< , L. C., Rouce, R. H., Smith, T. S. et al. (https://doi.org/10.1182/blood-2019-129559>
97. 2011) Use of zidovudine and interferon alfa with chemotherapy improves survival in both acute and lymphoma subtypes of adult T-cell leukemia/lymphoma. J. Clin. Oncol. 29, 4696-4701.
< , A., Crichton, S., Montoto, S. et al. (https://doi.org/10.1200/JCO.2011.35.5578>
98. 2016) TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma. Oncol. Lett. 12, 1519-1524.
< , H., Ohnishi, K., Ma, C. et al. (https://doi.org/10.3892/ol.2016.4774>
99. 2019) Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393, 229-240.
< , S., O’Connor, O. A., Pro, B. et al. (https://doi.org/10.1016/S0140-6736(18)32984-2>
100. 2014) Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 123, 3095-3100.
< , S. M., Advani, R. H., Bartlett, N. L. et al. (https://doi.org/10.1182/blood-2013-12-542142>
101. 2023) Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front. Immunol. 14, 1198365.
< , M. M., Ma, Y., Yin, Z. et al. (https://doi.org/10.3389/fimmu.2023.1198365>
102. 2023) Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 98, 193-209.
< , A. C., Tejasvi, T., Wilcox, R. A. (https://doi.org/10.1002/ajh.26760>
103. 2019) Preliminary results from a multicenter, single-arm, phase 2 study of CS1001, an anti-programmed death-ligand 1 (PD-L1) human monoclonal antibody (mAb), in patients (pts) with relapsed or refractory extranodal natural killer/T cell lymphoma (rr-ENKTL). Blood 134, 2833.
< , H.-Q., Tao, R., Zou, L. et al. (https://doi.org/10.1182/blood-2019-121865>
104. 2009) Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am. J. Surg. Pathol. 33, 682-690.
< , Y., Moreau, A., Dupuis, J. et al. (https://doi.org/10.1097/PAS.0b013e3181971591>
105. 2022) The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front. Immunol. 13, 956090.
< , J.-L., Wang, Y.-T., Fu, W.-J. et al. (https://doi.org/10.3389/fimmu.2022.956090>
106. 2022) Single-cell characterization of leukemic and non-leukemic immune repertoires in CD8+ T-cell large granular lymphocytic leukemia. Nat. Commun. 13, 1981.
< , J., Bhattacharya, D., Lönnberg, T. et al. (https://doi.org/10.1038/s41467-022-29173-z>
107. 1997) OX40 expressed on fresh leukemic cells from adult T-cell leukemia patients mediates cell adhesion to vascular endothelial cells: implication for the possible involvement of OX40 in leukemic cell infiltration. Blood 89, 2951-2958.
< , A., Hori, T., Imada, K. et al. (https://doi.org/10.1182/blood.V89.8.2951>
108. 2019) A phase I/II study to examine the safety and efficacy of pembrolizumab 200 mg fixed dose administered every 3 weeks (Q3W) in combination with romidepsin in relapsed or refractory peripheral T-cell lymphoma (PTCL). Blood 134, 1546.
< , S. P., Neelapu, S. S., Burns, E. et al. (https://doi.org/10.1182/blood-2019-132278>
109. 2020) A phase II study of pembrolizumab in combination with romidepsin demonstrates durable responses in relapsed or refractory T-cell lymphoma (TCL). Blood 136, 40-41.
< , S. P., Xu, J., Becnel, M. R. et al. (https://doi.org/10.1182/blood-2020-143252>
110. 2020) Novel targeted therapies of T cell lymphomas. J. Hematol. Oncol. 13, 176.
< , K., Rassek, K., Korsak, D. et al. (https://doi.org/10.1186/s13045-020-01006-w>
111. 2014) Kidney injuries related to ipilimumab. Invest. New Drugs 32, 769-773.
< , H., Gueutin, V., Gharbi, C. et al. (https://doi.org/10.1007/s10637-014-0092-7>
112. 2023) Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. Br. J. Cancer 128, 387-397.
< , D., Karagiannidis, I., Beswick, E. J. (https://doi.org/10.1038/s41416-022-02056-2>
113. 2021) Immune checkpoint inhibitor-related Guillain-Barré syndrome: a case series and review of the literature. J. Immunother. 44, 276-282.
< , J. B. E., Leow, T. Y. S., Herbschleb, K. H. et al. (https://doi.org/10.1097/CJI.0000000000000364>
114. 2017) TIGIT and Helios are highly expressed on CD4+ T cells in Sézary syndrome patients. J. Invest. Dermatol. 137, 257-260.
< , N., Benoit, B., Kossenkov, A. V. et al. (https://doi.org/10.1016/j.jid.2016.08.016>
115. 2020) Extranodal NK/T cell lymphoma. Blood Res. 55, S63-S71.
< , S. H. (https://doi.org/10.5045/br.2020.S011>
116. 2012) Phase 2 trial of “sandwich” L-asparaginase, vincristine, and prednisone chemotherapy with radiotherapy in newly diagnosed, stage IE to IIE, nasal type, extranodal natural killer/T-cell lymphoma. Cancer 118, 3294-3301.
< , M., Zhang, H., Jiang, Y. et al. (https://doi.org/10.1002/cncr.26629>
117. 2019) PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum. Vaccin. Immunother. 15, 1111-1122.
< , Y., Chen, M., Nie, H. et al. (https://doi.org/10.1080/21645515.2019.1571892>
118. 2017) Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann. Hematol. 96, 25-31.
< , J. C., Kim, M., Choi, Y. et al. (https://doi.org/10.1007/s00277-016-2818-4>
119. 2013a) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636-5646.
< , L. B., Devaud, C., Duong, C. P. et al. (https://doi.org/10.1158/1078-0432.CCR-13-0458>
120. 2013b) Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2, e26286.
< , L. B., Kershaw, M. H., Darcy, P. K. (https://doi.org/10.4161/onci.26286>
121. 2016) Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J .Med. 375, 1749-1755.
< , D. B., Balko, J. M., Compton, M. L. et al. (https://doi.org/10.1056/NEJMoa1609214>
122. 2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186, 1338-1342.
< , N., Hafler, J. P., Brynedal, B. et al. (https://doi.org/10.4049/jimmunol.1003081>
123. 2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569-581.
< , N., Lozano, E., Burkett, P. R. et al. (https://doi.org/10.1016/j.immuni.2014.02.012>
124. 2021) Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci. Rep. 11, 3962.
< , C. L., Degasperi, A., Grandi, V. et al. (https://doi.org/10.1038/s41598-021-83352-4>
125. 1999) The T-cell activation markers CD30 and OX40/CD134 are expressed in nonoverlapping subsets of peripheral T-cell lymphoma. Blood 93, 3487-3493.
< , D., Fletcher, C. D. M., Pulford, K. et al. (https://doi.org/10.1182/blood.V93.10.3487.410k39_3487_3493>
126. 2018) Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol. 9, 888.
< , I. S. (https://doi.org/10.3389/fimmu.2018.00888>
127. 2017) A cellular platform for the evaluation of immune checkpoint molecules. Oncotarget 8, 64892-64906.
< , S., Hennig, A., Paster, W. et al. (https://doi.org/10.18632/oncotarget.17615>
128. 2018) Neuromuscular complications of programmed cell death-1 (PD-1) inhibitors. Curr. Neurol. Neurosci. Rep. 18, 63.
< , J. C., Brickshawana, A., Liewluck, T. (https://doi.org/10.1007/s11910-018-0878-7>
129. 2013) Comprehensive gene expression profiles of NK cell neoplasms identify vorinostat as an effective drug candidate. Cancer Lett. 333, 47-55.
< , K., Tsuzuki, S., Yoshida, N. et al. (https://doi.org/10.1016/j.canlet.2012.12.022>
130. 2018) Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood 131, 215-225.
< , K., Iwanaga, M., Yasunaga, J.-I. et al.(https://doi.org/10.1182/blood-2017-01-761874>
131. 2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47, 1304-1315.
< , K., Nagata, Y., Kitanaka, A. et al. (https://doi.org/10.1038/ng.3415>
132. 2022) The evolutionary legacy of immune checkpoint inhibitors. Semin. Cancer Biol. 86, 491-498.
< , I., Ramachandran, S., Zabel, C. et al. (https://doi.org/10.1016/j.semcancer.2022.03.020>
133. 2021) Roles of OX40 and OX40 ligand in mycosis fungoides and Sézary syndrome. Int. J. Mol. Sci. 22, 12576.
< , Y., Suga, H., Kamijo, H. et al. (https://doi.org/10.3390/ijms222212576>
134. 2008) PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677-704.
< , M. E., Butte, M. J., Freeman, G. J. et al. (https://doi.org/10.1146/annurev.immunol.26.021607.090331>
135. 2021) Cutaneous T-cell lymphomas – an update 2021. Hematol. Oncol. 39, 46-51.
< , W., Mitteldorf, C. (https://doi.org/10.1002/hon.2850>
136. 2020) Pembrolizumab in relapsed and refractory mycosis fungoides and Sézary syndrome: a multicenter phase II study. J. Clin. Oncol. 38, 20-28.
< , M. S., Rook, A. H., Porcu, P. et al. (https://doi.org/10.1200/JCO.19.01056>
137. 2000) Angiocentric lymphoma of the head and neck: patterns of systemic failure after radiation treatment. J. Clin. Oncol. 18, 54-63.
< , G. E., Cho, J. H., Yang, W. I. et al. (https://doi.org/10.1200/JCO.2000.18.1.54>
138. 2020) Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. Blood 136, 2754-2763.
< , S. J., Lim, J. Q., Laurensia, Y. et al. (https://doi.org/10.1182/blood.2020007247>
139. 2022) The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front. Pharmacol. 13, 868695.
< , S. K., Cho, S. W. (https://doi.org/10.3389/fphar.2022.868695>
140. 2016) Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 469, 581-590.
< , W. Y., Jung, H. Y., Nam, S. J. et al. (https://doi.org/10.1007/s00428-016-2011-0>
141. 2018) Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19, 1192-1204.
< , Y. H., Bagot, M., Pinter-Brown, L. et al. (https://doi.org/10.1016/S1470-2045(18)30379-6>
142. 2020) Sustained complete remission of extranodal NK/T-cell lymphoma, nasal type, following pembrolizumab and radiation therapy. J. Dtsch. Dermatol. Ges. 18, 1019-1021.
, G., von Dücker, L., Terheyden, P. (
143. 2020) Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist 25, e147-e159.
< , S. J., Fabrizio, D., Bane, S. et al. (https://doi.org/10.1634/theoncologist.2019-0244>
144. 2017) Immunomodulatory drugs: immune checkpoint agents in acute leukemia. Curr. Drug Targets 18, 315-331.
< , H. A., Kanakry, C. G., Luznik, L. et al. (https://doi.org/10.2174/1389450116666150518095346>
145. 2022) Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front. Immunol. 13, 945063.
< , K., Onodera, A., Kiuchi, M. et al. (https://doi.org/10.3389/fimmu.2022.945063>
146. 2010) Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove) 53, 73-77.
< , K., Vokurkova, D., Krejsek, J. et al. (https://doi.org/10.14712/18059694.2016.63>
147. 2004) Successful treatment of disseminated nasal T-cell lymphoma using high-dose chemotherapy and autologus peripheral blood stem cell transplantation: a case report. Auris Nasus Larynx 31, 79-83.
< , H., Kitanishi, T., Kitano, H. et al. (https://doi.org/10.1016/j.anl.2003.07.005>
148. 2009) PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia 23, 375-382.
< , T., Yoshimitsu, M., Fujiwara, H. et al. (https://doi.org/10.1038/leu.2008.272>
149. 2022) Roles of CD4+ T cells as mediators of antitumor immunity. Front. Immunol. 13, 972021.
< , D. S., Erbe, A. K., Sondel, P. M. et al. (https://doi.org/10.3389/fimmu.2022.972021>
150. 2010) PD-1 expression in T-cell lymphomas and reactive lymphoid entities: potential overlap in staining patterns between lymphoma and viral lymphadenitis. Am. J. Surg. Pathol. 34, 178-189.
< , C., Warnke, R. A., Arber, D. A. et al. (https://doi.org/10.1097/PAS.0b013e3181cc7e79>
151. 2022) Hematologic complications of immune checkpoint inhibitors. Blood 139, 3594-3604.
< , M. H., Rojas-Hernandez, C., Yee, C. (https://doi.org/10.1182/blood.2020009016>
152. 2017) PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing L-asparaginase. Blood 129, 2437-2442.
< , Y. L., Chan, T. S. Y., Tan, D. et al. (https://doi.org/10.1182/blood-2016-12-756841>
153. 2023) Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front. Immunol. 14, 1270365.
< , P., Liu, F., Liu, X. et al. (https://doi.org/10.3389/fimmu.2023.1270365>
154. 2015) Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J. Immunother. Cancer 3, 11.
< , H., Balmelli, C., Bossard, M. et al. (https://doi.org/10.1186/s40425-015-0057-1>
155. 2021) The multifaceted role of Th1, Th9, and Th17 cells in immune checkpoint inhibition therapy. Front. Immunol. 12, 625667.
< , J., Lozano-Ruiz, B., Yang, F. M. et al. (https://doi.org/10.3389/fimmu.2021.625667>
156. 2020) Antigen processing and presentation in cancer immunotherapy. J. Immunother. Cancer 8, e001111.
< , M. Y., Jeon, J. W., Sievers, C. et al. (https://doi.org/10.1136/jitc-2020-001111>
157. 2006) The effect of pre-irradiation dose intense CHOP on anthracyline resistance in localized nasal NK/T-cell lymphoma. Haematologica 91, 427-428.
, S. H., Ahn, Y. C., Kim, W. S. et al. (
158. 2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J. Clin. Oncol. 34, 2698-2704.
< , A. M., Ansell, S. M., Armand, P. et al. (https://doi.org/10.1200/JCO.2015.65.9789>
159. 2020) Clonal hematopoiesis in angioimmunoblastic T-cell lymphoma with divergent evolution to myeloid neoplasms. Blood Adv. 4, 2261-2271.
< , N. E., Petrova-Drus, K., Huet, S. et al. (https://doi.org/10.1182/bloodadvances.2020001636>
160. 2023) The predictive implication of programmed cell death ligand 1 expression in extranodal natural killer/T-cell lymphoma and its correlation with clinicopathological features: a systematic review and meta-analysis. Transl. Cancer Res. 12, 2115-2127.
< , W., Zheng, Q., Luo, X. et al. (https://doi.org/10.21037/tcr-22-2569>
161. 2018) Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J. Hematol. Oncol. 11, 15.
< , X., Cheng, Y., Zhang, M. et al. (https://doi.org/10.1186/s13045-018-0559-7>
162. 2022) Epidemiological characteristics of peripheral T-cell lymphoma: a population-based study. Front. Oncol. 12, 863269.
< , S., Liu, W., Li, H. et al. (https://doi.org/10.3389/fonc.2022.863269>
163. 2023) Antitumor activity and safety of camrelizumab combined with apatinib in patients with relapsed or refractory peripheral T-cell lymphoma: an open-label, multicenter, phase II study. Front. Immunol. 14, 1128172.
< , Y., Song, Y., Zuo, S. et al. (https://doi.org/10.3389/fimmu.2023.1128172>
164. 2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9, 176-189.
< , L., Zhang, X., Chen, F. et al. (https://doi.org/10.18632/genesandcancer.180>
165. 2022) Applications of circulating tumor DNA in immune checkpoint inhibition: emerging roles and future perspectives. Front. Oncol. 12, 836891.
< , C., Zhang, Y. C., Chen, Z. H. et al. (https://doi.org/10.3389/fonc.2022.836891>
166. 2017) TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 38, 20-28.
< , N. A., Chiang, E. Y., Grogan, J. L. (https://doi.org/10.1016/j.it.2016.10.002>
167. 2020) The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management. CA Cancer J. Clin. 70, 47-70.
< , E., O’Connor, O. A. (https://doi.org/10.3322/caac.21589>
168. 2013) Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS One 8, e68343.
< , E., Jobanputra, V., Lewis, S. K. et al. (https://doi.org/10.1371/journal.pone.0068343>
169. 2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102, e148-e151.
Pamela, D., Francois, L., Edoardo, M. et al. (
170. 2019) Camrelizumab: first global approval. Drugs 79, 1355-1361.
< , A., Keam, S. J. (https://doi.org/10.1007/s40265-019-01167-0>
171. 2021) Novel treatment strategies utilizing immune reactions against chronic myelogenous leukemia stem cells. Cancers (Basel) 13, 5435.
< , M. (https://doi.org/10.3390/cancers13215435>
172. 2016) Successful treatment of genetically profiled pediatric extranodal NK/T-cell lymphoma targeting oncogenic STAT3 mutation. Pediatr. Blood Cancer 63, 727-730.
< , T. A., Kirov, I., Wungwattana, M. et al. (https://doi.org/10.1002/pbc.25854>
173. 2018) Mechanisms of immune evasion and immune modulation by lymphoma cells. Front. Oncol. 8, 54.
< , T., Tzankov, A. (https://doi.org/10.3389/fonc.2018.00054>
174. 2023) A phase 2 study of pembrolizumab after autologous stem cell transplantation in patients with T-cell non-Hodgkin lymphoma. Blood 142, 621-628.
< , M. H., Dahi, P. B., Redd, R. A. et al. (https://doi.org/10.1182/blood.2023020244>
175. 2022) A phase 1a/b open-label, dose-escalation study of etigilimab alone or in combination with nivolumab in patients with locally advanced or metastatic solid tumors. Clin. Cancer Res. 28, 882-892.
< , N. B., Ulahannan, S. V., Bendell, J. C. et al. (https://doi.org/10.1158/1078-0432.CCR-21-2780>
176. 2019) Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 1884-1901.
< , O., van Akkooi, A. C. J., Ascierto, P. A. et al. (https://doi.org/10.1093/annonc/mdz411>
177. 2021) CD8+ T lymphocytes immune depletion and LAG-3 overexpression in Hodgkin lymphoma tumor microenvironment exposed to anti-PD-1 immunotherapy. Cancers (Basel) 13, 5487.
< , J. M., Mouraud, S., Adam, J. et al. (https://doi.org/10.3390/cancers13215487>
178. 2016) PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood 128, 1374-1381.
< , H., Kiyasu, J., Kato, T. et al. (https://doi.org/10.1182/blood-2016-02-698936>
179. 2021) Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood 137, 1669-1678.
< , F., Chan, W. E., Wiedemann, S. et al. (https://doi.org/10.1182/blood.2020007878>
180. 2013) Safety and activity of crizotinib for paediatric patients with refractory solid tumors or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472-480.
< , Y. P., Lim, M. S., Voss, S. D. et al. (https://doi.org/10.1016/S1470-2045(13)70095-0>
181. 2017) Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Children’s Oncology Group study. J. Clin. Oncol. 35, 3215-3221.
< , Y. P., Voss, S. D., Lim, M. S. et al. (https://doi.org/10.1200/JCO.2017.73.4830>
182. 2016) The immune system and cancer evasion strategies: therapeutic concepts. J. Intern. Med. 279, 541-562.
< , S., Laubli, H., Soysal, S. D. et al. (https://doi.org/10.1111/joim.12470>
183. 2005) Allogeneic haematopoietic stem cell transplantation as a promising treatment for natural killer-cell neoplasms. Br. J. Haematol. 130, 561-567.
< , N., Kami, M., Kishi, Y. et al. (https://doi.org/10.1111/j.1365-2141.2005.05651.x>
184. 2020) Expression of the checkpoint receptors LAG-3, TIM-3 and VISTA in peripheral T cell lymphomas. J. Clin. Pathol. 73, 197-203.
< , C. A., Brown, N. A., Wilcox, R. A. (https://doi.org/10.1136/jclinpath-2019-206117>
185. 2018) SYK expression in monomorphic epitheliotropic intestinal T-cell lymphoma. Mod. Pathol. 31, 505-516.
< , G., Maurus, K., Buszello, C. et al. (https://doi.org/10.1038/modpathol.2017.145>
186. 2017) Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol. Immunother. 66, 877-890.
< , T., Ohkuri, T., Ohara, K. et al. (https://doi.org/10.1007/s00262-017-1987-x>
187. 2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J. Clin. Oncol. 34, 2460-2467.
< , R., Chow, L. Q., Dees, E. C. et al. (https://doi.org/10.1200/JCO.2015.64.8931>
188. 1999) Successful treatment of advanced natural killer cell lymphoma with high-dose chemotherapy and syngeneic peripheral blood stem cell transplantation. Bone Marrow Transplant. 23, 1321-1322.
< , Y., Takenaka, K., Shinagawa, K. et al. (https://doi.org/10.1038/sj.bmt.1701803>
189. 2020) Enhancing antitumor immunity through checkpoint blockade as a therapeutic strategy in T-cell lymphomas. Blood Adv. 4, 4256-4266.
< , A., Al-Juhaishi, T., Davila, E. et al. (https://doi.org/10.1182/bloodadvances.2020001966>
190. 2023) The safety of CAR-T cells and PD-1 antibody combination on an experimental model. Biochem. Biophys. Res. Commun. 649, 25-31.
< , H. H., Bui, K. C., Nguyen, T. M. L. et al. (https://doi.org/10.1016/j.bbrc.2023.01.096>
191. 2019) AIHA and pancytopenia as complications of pembrolizumab therapy for metastatic melanoma: a case report. Case Rep. Oncol. 12, 456-465.
< , D., AlZahrani, F., Smylie, M. (https://doi.org/10.1159/000500856>
192. 2019) Addition of low-dose decitabine to anti–PD-1 antibody camrelizumab in relapsed/refractory classical Hodgkin lymphoma. J. Clin. Oncol. 37, 1479-1489.
< , J., Wang, C., Liu, Y. et al. (https://doi.org/10.1200/JCO.18.02151>
193. 2022) First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer(☆). Ann. Oncol. 33, 169-180.
< , J., Maurice-Dror, C., Lee, D. H. et al. (https://doi.org/10.1016/j.annonc.2021.11.002>
194. 2015) Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J. Clin. Oncol. 33, 2492-2499.
< , O. A., Horwitz, S., Masszi, T. et al. (https://doi.org/10.1200/JCO.2014.59.2782>
195. 2023) Rapid T-cell lymphoma progression associated with immune checkpoint inhibitors. Expert Rev. Hematol. 16, 535-541.
< , A., Fuji, S. (https://doi.org/10.1080/17474086.2023.2215424>
196. 2019) Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 110, 2080-2089.
< , Y., Nishikawa, H. (https://doi.org/10.1111/cas.14069>
197. 2019) DUSP22-rearranged anaplastic lymphomas are characterized by specific morphological features and a lack of cytotoxic and JAK/STAT surrogate markers. Haematologica 104, e158-e162.
< , A., de Villambrosía, S. G., Prieto-Torres, L. et al. (https://doi.org/10.3324/haematol.2018.205880>
198. 2022) Prognostic implication of CTLA-4, PD-1, and PD-L1 expression in aggressive adult T-cell leukemia-lymphoma. Ann. Hematol. 101, 799-810.
< , A., Fuji, S., Kitano, S. et al. (https://doi.org/10.1007/s00277-022-04760-8>
199. 2017) Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 28, 583-589.
< , J. C., Ni, A., Chaft, J. E. et al. (https://doi.org/10.1093/annonc/mdw640>
200. 2020) Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 11, 608024.
< , D., Konduri, V., Vazquez-Perez, J. et al. (https://doi.org/10.3389/fimmu.2020.608024>
201. 2018) Immune checkpoint inhibitor toxicity. Curr. Oncol. Rep. 20, 72.
< , D. J., Carlino, M. S. (https://doi.org/10.1007/s11912-018-0718-6>
202. 2018) Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum. Pathol. 71, 91-99.
< , P. K., Charu, V., DeLisser, M. et al. (https://doi.org/10.1016/j.humpath.2017.10.029>
203. 2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124, 1473-1480.
< Castellar, E. R., Jaffe, E. S., Said, J. W. et al. (https://doi.org/10.1182/blood-2014-04-571091>
204. Pathak, S., Zito, P. M. (2024) Clinical Guidelines for the Staging, Diagnosis, and Management of Cutaneous Malignant Melanoma. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
205. 2017) Anti-PD-1-related cryoglobulinemia during treatment with nivolumab in NSCLC patient. Ann. Oncol. 28, 1405-1406.
< , B., Musolino, A., Tiseo, M. (https://doi.org/10.1093/annonc/mdx126>
206. 2022) Circulating cell-free DNA extraction from liquid biopsy for cancer research. Folia Biol. (Praha) 68, 153-157.
< , L., Safarikova, M., Ulrych, J. et al. (https://doi.org/10.14712/fb2022068040153>
207. 1997) The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am. J. Pathol. 151, 343-351.
, S., Wlodarska, I., Pulford, K. et al. (
208. 2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 1870-1877.
< , H. M., Duvic, M., Martin, A. et al. (https://doi.org/10.1200/JCO.2009.26.2386>
209. 2020) Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J. Clin. Invest. 130, 733-747.
< , S., Doubrovina, E., Suser, S. et al. (https://doi.org/10.1172/JCI121127>
210. 2018) Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel) 10, 99.
< , N., Larose, H., Lim, M. S. et al. (https://doi.org/10.3390/cancers10040099>
211. 2018) Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol. Res. 6, 900-909.
< , C., Leung, S., Myskowski, P. L. et al. (https://doi.org/10.1158/2326-6066.CIR-17-0270>
212. 2019) Phase 1 results of anti-PD-ligand 1 (durvalumab) and lenalidomide in patients with cutaneous T cell lymphoma and correlation with programmed death ligand 1 expression and gene expression profile. Blood 134, 4024.
< , C., Wu, X., Stiller, T. et al. (https://doi.org/10.1182/blood-2019-126358>
213. 2021) Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 124, 359-367.
< , H., Orhan, A., Christensen, J. P. et al. (https://doi.org/10.1038/s41416-020-01048-4>
214. 2018) Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N. Engl. J. Med. 378, 1947-1948.
< , L., Waldmann, T. A., Janakiram, M. et al. (https://doi.org/10.1056/NEJMc1803181>
215. 2019) Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood 134, 1406-1414.
< , D. A., Conlon, K. C., Janakiram, M. et al. (https://doi.org/10.1182/blood.2019002038>
216. 2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16, 908-918.
< , A., Puzanov, I., Dummer, R. et al. (https://doi.org/10.1016/S1470-2045(15)00083-2>
217. 2018) Cancer immunotherapy using checkpoint blockade. Science 359, 1350-1355.
< , A., Wolchok, J. D. (https://doi.org/10.1126/science.aar4060>
218. Rigaud, C., Abbou, S., Minard-Colin, V. et al. (2018) Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr. Blood Cancer 65,
<https://doi.org/10.1002/pbc.26902>
219. 2018) CTLA-4: a moving target in immunotherapy. Blood 131, 58-67.
< , B., Halliday, N., Sansom, D. M. (https://doi.org/10.1182/blood-2017-06-741033>
220. 2003) Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat. Rev. Immunol. 3, 544-556.
< , C. E., Schneider, H. (https://doi.org/10.1038/nri1131>
221. 2022) The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin. Ther. Targets 26, 1057-1071.
< , M., Khodakarami, A., Ahmadi, A. et al. (https://doi.org/10.1080/14728222.2022.2170781>
222. 2019) Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J. Immunother. Cancer 7, 319.
< , H., Johnson, D. H., Trinh, V. A. et al. (https://doi.org/10.1186/s40425-019-0774-y>
223. 2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187-2194.
< , K., Apetoh, L., Sullivan, J. M. et al. (https://doi.org/10.1084/jem.20100643>
224. 2021) A systematic review of immune checkpoint inhibitor-related neurological adverse events and association with anti-neuronal autoantibodies. Expert Opin. Biol. Ther. 21, 1237-1251.
< , A., Tapia Rico, G., Shaikh, A. et al. (https://doi.org/10.1080/14712598.2021.1897101>
225. 2000) Successful treatment of disseminated nasal NK/T-cell lymphoma using double autologous peripheral blood stem cell transplantation. Int. J. Hematol. 71, 75-78.
, M., Matsue, K., Takeuchi, M. et al. (
226. 2023) TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol. Immunother. 72, 3405-3425.
< , N., Janicka, N., Szlasa, W. et al. (https://doi.org/10.1007/s00262-023-03516-1>
227. 2020) Blockade of programmed cell death protein 1 (PD-1) in Sézary syndrome reduces Th2 phenotype of non-tumoral T lymphocytes but may enhance tumor proliferation. Oncoimmunology 9, 1738797.
< , I., Ignatova, D., Chang, Y. T. et al. (https://doi.org/10.1080/2162402X.2020.1738797>
228. 2022) Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J. Immunother. Cancer 10, e003776.
< , P., Tan, D. S. W., Martín, M. et al. (https://doi.org/10.1136/jitc-2021-003776>
229. 2018) Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat. Commun. 9, 697.
< , A., Crispatzu, G., Oberbeck, S. et al. (https://doi.org/10.1038/s41467-017-02688-6>
230. 2015) Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion. Mol. Genet. Genomic Med. 3, 130-136.
< , A., Liang, W. S., Tembe, W. et al. (https://doi.org/10.1002/mgg3.121>
231. Shah, N., Adrianzen Herrera, D., Shah, U. et al. (2019) Unique racial patterns in rare T-cell lymphomas: a national cancer registry analysis from 2001 to 2015. J. Clin. Oncol. 37 (Suppl.15),
<https://doi.org/10.1200/JCO.2019.37.15_suppl.e190>
232. 2018) The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153-167.
< , A. H., Pauken, K. E. (https://doi.org/10.1038/nri.2017.108>
233. 2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Lett. 574, 37-41.
< , K. A., Fitz, L. J., Lee, J. M. et al. (https://doi.org/10.1016/j.febslet.2004.07.083>
234. 2013) The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 6, 74.
< , L., Chen, S., Yang, L. et al. (https://doi.org/10.1186/1756-8722-6-74>
235. 2019) Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): a multicentre, single-arm, phase 2 trial. Lancet Haematol. 6, e12-e19.
< , Y., Su, H., Song, Y. et al. (https://doi.org/10.1016/S2352-3026(18)30192-3>
236. 2021) Efficacy and safety of geptanolimab (GB226) for relapsed or refractory peripheral T cell lymphoma: an open-label phase 2 study (Gxplore-002). J. Hematol. Oncol. 14, 12.
< , Y., Wu, J., Wang, Z. et al. (https://doi.org/10.1186/s13045-021-01033-1>
237. 2008) Adult T-cell leukemia/lymphoma cells from blood and skin tumors express cytotoxic T lymphocyte-associated antigen-4 and Foxp3 but lack suppressor activity toward autologous CD8+ T cells. Cancer Sci. 99, 98-106.
< , T., Kabashima, K., Tokura, Y. (https://doi.org/10.1111/j.1349-7006.2007.00646.x>
238. 2021) Characterization of ASP8374, a fully-human, antagonistic anti-TIGIT monoclonal antibody. Cancer Treat. Res. Commun. 28, 100433.
< , K., Koelsch, G., Seidel-Dugan, C. et al. (https://doi.org/10.1016/j.ctarc.2021.100433>
239. 2022) Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 603, 942-948.
< , K., Ajani, J. A., Moehler, M. et al. (https://doi.org/10.1038/s41586-022-04508-4>
240. 2023) Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. Cancer Pathog. Ther. 1, 76-86.
< , R. C. M. C., Lopes, M. F., Travassos, L. H. (https://doi.org/10.1016/j.cpt.2022.11.001>
241. 2020) Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. Br. J. Haematol. 189, 1119-1126.
< , S. D., Till, B. G., Shadman, M. S. et al. (https://doi.org/10.1111/bjh.16494>
242. 2021) Phase II trial of atezolizumab (anti-PD-L1) in the treatment of stage IIB–IVB mycosis fungoides/Sézary syndrome patients relapsed/refractory after a previous systemic treatment (PARCT). Eur. J. Cancer 156, S22-S23.
< , R., Romero, P. O., Bagot, M. et al. (https://doi.org/10.1016/S0959-8049(21)00668-7>
243. 2023) Therapeutic advances in relapsed and refractory peripheral T-cell lymphoma. Cancers (Basel) 15, 589.
< , R., Moskowitz, A. J. (https://doi.org/10.3390/cancers15030589>
244. 2018) Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442-457 e23.
< , S., Zhao, J., Xing, Y. et al. (https://doi.org/10.1016/j.cell.2018.09.007>
245. 2018) Regulation and function of the PD-L1 checkpoint. Immunity 48, 434-452.
< , C., Mezzadra, R., Schumacher, T. N. (https://doi.org/10.1016/j.immuni.2018.03.014>
246. 2022) Combination of anti-PD-1 antibody, anlotinib and pegaspargase “sandwich” with radiotherapy in localized natural killer/T cell lymphoma. Front. Immunol. 13, 766200.
< , P., Wang, Y., Yang, H. et al. (https://doi.org/10.3389/fimmu.2022.766200>
247. 2011) Prospective measurement of Epstein-Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood 118, 6018-6022.
< , R., Yamaguchi, M., Izutsu, K. et al. (https://doi.org/10.1182/blood-2011-05-354142>
248. 2019) Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol. 80, 208-250.
< , S. M., Tsao, H., Bichakjian, C. K. et al. (https://doi.org/10.1016/j.jaad.2018.08.055>
249. 2019) Recurrent PDL1 expression and PDL1 (CD274) copy number alterations in breast implant-associated anaplastic large cell lymphomas. Hum. Pathol. 90, 60-69.
< , V., Corsini, C., Fiori, S. et al. (https://doi.org/10.1016/j.humpath.2019.05.007>
250. 2016) Acute lymphocytic myocarditis with anti-PD-1 antibody nivolumab. Circ. Heart Fail. 9, e003514.
< , T., Keshino, E., Makiyama, A. et al. (https://doi.org/10.1161/CIRCHEARTFAILURE.116.003514>
251. 2021) Tumor microenvironment of adult T-cell leukemia/lymphoma. J. Clin. Exp. Hematop. 61, 202-209.
< , M., Miyoshi, H., Ohshima, K. (https://doi.org/10.3960/jslrt.21007>
252. 2019) Sintilimab for relapsed/refractory (r/r) extranodal NK/T-cell lymphoma (ENKTL): a multicenter, single-arm, phase 2 trial (ORIENT-4). J. Clin. Oncol. 37, 7504.
< , R., Fan, L., Song, Y. et al. (https://doi.org/10.1200/JCO.2019.37.15_suppl.7504>
253. 2019) Management of immune related adverse events induced by immune checkpoint inhibition. Cancer Lett. 456, 80-87.
< , A., Zhan, T., Härtel, N. et al. (https://doi.org/10.1016/j.canlet.2019.04.018>
254. 2021) Epidemiology of non-Hodgkin’s lymphoma. Med. Sci. (Basel) 9, 5.
, K. C., Barsouk, A., Saginala, K. et al. (
255. 2020) Immune-related neurological toxicities of PD-1/PD-L1 inhibitors in cancer patients: a systematic review and meta-analysis. Front. Immunol. 11, 595655.
< , Y., Gao, A., Wen, Q. et al. (https://doi.org/10.3389/fimmu.2020.595655>
256. 1999) CD4 T cells and their role in antitumor immune responses. J. Exp. Med. 189, 753-756.
< , R. E., Ossendorp, F., Offringa, R. et al. (https://doi.org/10.1084/jem.189.5.753>
257. 2019) Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death. Haematologica 104, 1428-1439.
< , A., Broin, N., Frentzel, J. et al. (https://doi.org/10.3324/haematol.2017.181966>
258. 2017) Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J. Clin. Exp. Hematop. 57, 120-142.
< , N., Sakamoto, K., Sakata, S. et al. (https://doi.org/10.3960/jslrt.17023>
259. 2021) Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23, 39.
< , J. D., Zhang, B. (https://doi.org/10.1208/s12248-021-00574-0>
260. 2016) Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128, 1490-1502.
< , D., Dobay, M. P. D., Morin, R. D. et al. (https://doi.org/10.1182/blood-2016-02-698977>
261. 2018) Novel insights into the pathogenesis of T-cell lymphomas. Blood 131, 2320-2330.
< , J. S., Lim, M. S., Elenitoba-Johnson, K. S. J. (https://doi.org/10.1182/blood-2017-11-764357>
262. 2023) Hematologic malignancies following immune checkpoint inhibition for solid tumors. Cancer Immunol. Immunother. 72, 249-255.
< , M. J. M., van der Wagen, L. E., Mous, R. et al. (https://doi.org/10.1007/s00262-022-03230-4>
263. 2018) Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr. Med. Chem. 25, 1327-1339.
< , G., Marone, G., Mercurio, V. et al. (https://doi.org/10.2174/0929867324666170407125017>
264. 2022) Monomorphic epitheliotropic intestinal T-cell lymphoma comprises morphologic and genomic heterogeneity impacting outcome. Haematologica 108, 181-195.
< , L., Cavalieri, D., Missiaglia, E. et al. (https://doi.org/10.3324/haematol.2022.281226>
265. 2022) How to diagnose and manage neurological toxicities of immune checkpoint inhibitors: an update. J. Neurol. 269, 1701-1714.
< , A., Muńiz-Castrillo, S., Farina, A. et al. (https://doi.org/10.1007/s00415-021-10870-6>
266. 2019) Patient-reported outcomes in KEYNOTE-087, a phase 2 study of pembrolizumab in patients with classical Hodgkin lymphoma. Leuk. Lymphoma 60, 2705-2711.
< , B., Fanale, M., Ardeshna, K. M. et al. (https://doi.org/10.1080/10428194.2019.1602262>
267. 2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J. Clin. Oncol. 26, 4124-4130.
, J., Armitage, J., Weisenburger, D. (
268. 2013) The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 8, e53745.
< , C. J., Goldinger, S. M., Loquai, C. et al. (https://doi.org/10.1371/journal.pone.0053745>
269. 2022) Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica 107, 1864-1879.
< , C. M. M., Chen, S., Phyu, T. et al. (https://doi.org/10.3324/haematol.2021.280003>
270. 2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651-668.
< , A. D., Fritz, J. M., Lenardo, M. J. (https://doi.org/10.1038/s41577-020-0306-5>
271. 2015) Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 36, 63-70.
< , L. S., Sansom, D. M. (https://doi.org/10.1016/j.it.2014.12.001>
272. 2018) Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721-1728.
< , D. Y., Salem, J. E., Cohen, J. V. et al. (https://doi.org/10.1001/jamaoncol.2018.3923>
273. 2016) High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients. Oncotarget 7, 33035-33045.
< , H., Wang, L., Liu, W. J. et al. (https://doi.org/10.18632/oncotarget.8847>
274. 2015) CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann. Hematol. 94, 1381-1388.
< , L., Wang, H., Li, P. F. et al. (https://doi.org/10.1007/s00277-015-2359-2>
275. 2013) First-line combination of gemcitabine, oxaliplatin, and L-asparaginase (GELOX) followed by involved-field radiation therapy for patients with stage IE/IIE extranodal natural killer/T-cell lymphoma. Cancer 119, 348-355.
< , L., Wang, Z. H., Chen, X. Q. et al. (https://doi.org/10.1002/cncr.27752>
276. 2017) PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552, 121-125.
< , T., Kurgyis, Z., Keppler, S. et al. (https://doi.org/10.1038/nature24649>
277. 2016) OX40, OX40L and autoimmunity: a comprehensive review. Clin. Rev. Allergy Immunol. 50, 312-332.
< , G. J., Hirschfield, G. M., Lane, P. J. (https://doi.org/10.1007/s12016-015-8498-3>
278. 2019) The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133, 1703-1714.
< , R., Cerroni, L., Kempf, W. et al. (https://doi.org/10.1182/blood-2018-11-881268>
279. Willemze, R., Hodak, E., Zinzani, P. L. et al. (2018) Primary cutaneous lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Approved by the ESMO Guidelines Committee: December 2006, last update January 2018. This publication supersedes the previously published version – Ann. Oncol. 2013; 24 (Suppl. 6): vi149–vi154. Ann. Oncol. 29, iv30-iv40.
280. 2004) Study of CTLA-4 regulation in large granular lymphocyte leukemia cells and their normal counterparts. Blood 104, 3871.
< , M. W., Quimper, M., Gondek, L. et al. (https://doi.org/10.1182/blood.V104.11.3871.3871>
281. 2006) Increased expression of CTLA-4 in malignant T cells from patients with mycosis fungoides – cutaneous T-cell lymphoma. J. Invest. Dermatol. 126, 212-219.
< , H. K., Wilson, A. J., Gibson, H. M. et al. (https://doi.org/10.1038/sj.jid.5700029>
282. 2018a) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363, k4226.
< , C., Chen, Y. P., Du, X. J. et al. (https://doi.org/10.1136/bmj.k4226>
283. 2018b) The efficacy and safety of anti-PD-1/PD-L1 antibodies combined with chemotherapy or CTLA4 antibody as a first-line treatment for advanced lung cancer. Int. J. Cancer 142, 2344-2354.
< , X., Huang, Z., Zheng, L. et al. (https://doi.org/10.1002/ijc.31252>
284. 2016) Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am. J. Surg. Pathol. 40, 676-688.
< , M., Medeiros, L. J., Tang, G. (https://doi.org/10.1097/PAS.0000000000000614>
285. 1995) Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer 76, 2351-2356.
< , M., Kita, K., Miwa, H. et al. (https://doi.org/10.1002/1097-0142(19951201)76:11<2351::AID-CNCR2820761125>3.0.CO;2-1>
286. 2018) Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood 131, 2528-2540.
< , M., Suzuki, R., Oguchi, M. (https://doi.org/10.1182/blood-2017-12-791418>
287. 2020) Durable response to sintilimab and chidamide in a patient with pegaspargase- and immunotherapy-resistant NK/T-cell lymphoma: case report and literature review. Front. Oncol. 10, 608304.
< , Z., Yao, S., Liu, Y. et al. (https://doi.org/10.3389/fonc.2020.608304>
288. 2008) Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. Blood 111, 1610-1616.
< , J., Epling-Burnette, P. K., Painter, J. S. et al. (https://doi.org/10.1182/blood-2007-06-093823>
289. 2015) Clinical outcomes and prognostic factors of up-front autologous stem cell transplantation in patients with extranodal natural killer/T cell lymphoma. Biol. Blood Marrow Transplant. 21, 1597-1604.
< , H. Y., Kim, J. S., Mun, Y. C. et al. (https://doi.org/10.1016/j.bbmt.2015.05.003>
290. 2003) L-asparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int. J. Hematol. 78, 163-167.
< , W., Zheng, W., Zhang, Y. et al. (https://doi.org/10.1007/BF02983387>
291. 2016) Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica 101, 757-763.
< , H. Y., Kim, P., Kim, W. S. et al. (https://doi.org/10.3324/haematol.2015.139253>
292. 2004) Radiation therapy versus chemotherapy as initial treatment for localized nasal natural killer (NK)/T-cell lymphoma: a single institute survey in Taiwan. Ann. Oncol. 15, 618-625.
< , J. Y., Chi, K. H., Yang, M. H. et al. (https://doi.org/10.1093/annonc/mdh143>
293. 2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 17, 1283-1294.
< , A., Santoro, A., Shipp, M. et al. (https://doi.org/10.1016/S1470-2045(16)30167-X>
294. 2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48-57.
< , X., Harden, K., Gonzalez, L. C. et al. (https://doi.org/10.1038/ni.1674>
295. 2021) Pembrolizumab-induced autoimmune haemolytic anemia in a patient with chronic lymphocytic leukaemia successfully treated with ibrutinib. BMJ Case Rep. 14, e245350.
< , N. K., Alrifai, T., Miller, I. J. et al. (https://doi.org/10.1136/bcr-2021-245350>
296. 2021) Aggressive T-cell lymphomas: 2021 updates on diagnosis, risk stratification and management. Am. J. Hematol. 96, 1027-1046.
< , J. M., Hanona, P. (https://doi.org/10.1002/ajh.26270>
297. 2011) CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161-168.
< , N., Bevan, M. J. (https://doi.org/10.1016/j.immuni.2011.07.010>
298. 2019) PRO66 incidence and prevalence of T-cell lymphoma in the EMA member states: methodology for estimation in rare malignancies of CTCL and PTCL. Value Health 22, S853.
< , N., Dalal, M. R. (https://doi.org/10.1016/j.jval.2019.09.2396>
299. 2019) Circulating PD-1 (+) cells may participate in immune evasion in peripheral T-cell lymphoma and chidamide enhance antitumor activity of PD-1 (+) cells. Cancer Med. 8, 2104-2113.
< , W., Shen, H., Zhang, Y. et al. (https://doi.org/10.1002/cam4.2097>
300. 2023) Immune checkpoint inhibitor-induced primary hyperparathyroidism in a small-cell lung cancer patient: a case report. Medicina (Kaunas) 59, 215.
< , Y., Cui, Y., Li, Y. et al. (https://doi.org/10.3390/medicina59020215>
301. 2014) TH1/TH2 cell differentiation and molecular signals. Adv. Exp. Med. Biol. 841, 15-44.
< , Y., Zhang, Y., Gu, W. et al. (https://doi.org/10.1007/978-94-017-9487-9_2>
302. 2020) Functions of immune checkpoint molecules beyond immune evasion. Adv. Exp. Med. Biol. 1248, 201-226.
< , Y., Zheng, J. (https://doi.org/10.1007/978-981-15-3266-5_9>
303. 2019) TLR4 expression correlated with PD-L1 expression indicates a poor prognosis in patients with peripheral T-cell lymphomas. Cancer Manag. Res. 11, 4743-4756.
< , S., Sun, M., Meng, H. et al. (https://doi.org/10.2147/CMAR.S203156>
304. 2019) Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: efficacy and safety from the phase II CheckMate 436 study. J. Clin. Oncol. 37, 3081-3089.
< , P. L., Santoro, A., Gritti, G. et al. (https://doi.org/10.1200/JCO.19.01492>
305. 2022) Faster cytotoxicity with age: increased perforin and granzyme levels in cytotoxic CD8+ T cells boost cancer cell elimination. Aging Cell 21, e13668.
< , D., Angenendt, A., Kaschek, L. et al. (https://doi.org/10.1111/acel.13668>