Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 152-165

https://doi.org/10.14712/fb2024070030152

Heat Shock Protein Network: the Mode of Action, the Role in Protein Folding and Human Pathologies

Aleksandr Melikov1,2, Petr Novák1,2

1BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
2BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic

Received July 2024
Accepted October 2024

References

1. Ahn, S.-G., Kim, S.-A., Yoon, J.-H. et al. (2005) Heat-shock cognate 70 is required for the activation of heat-shock factor 1 in mammalian cells. Biochem. J. 392, 145-152. <https://doi.org/10.1042/BJ20050412>
2. Alamo, M. D., Hogan, D. J., Pechmann, S. et al. (2011) Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol. 9, e1001100. <https://doi.org/10.1371/journal.pbio.1001100>
3. Albanèse, V., Reissmann, S., Frydman, J. (2010) A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J. Cell Biol. 189, 69-81. <https://doi.org/10.1083/jcb.201001054>
4. Aluksanasuwan, S., Sueksakit, K., Fong-Ngern, K. et al. (2017) Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress. FASEB J. 31, 2157-2167. <https://doi.org/10.1096/fj.201600910RR>
5. Augustine, G. J., Morgan, J. R., Villalba-Galea, C. A. et al. (2006) Clathrin and synaptic vesicle endocytosis: studies at the squid giant synapse. Biochem. Soc. Trans. 34, 68-72. <https://doi.org/10.1042/BST0340068>
6. Bercovich, B., Stancovski, I., Mayer, A. et al. (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272, 9002-9010. <https://doi.org/10.1074/jbc.272.14.9002>
7. Bouhouche, A., Benomar, A., Bouslam, N. et al. (2005) Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J. Med. Genet. 43, 441-443. <https://doi.org/10.1136/jmg.2005.039230>
8. Brehme, M., Voisine, C., Rolland, T. et al. (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135-1150. <https://doi.org/10.1016/j.celrep.2014.09.042>
9. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. et al. (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167-195. <https://doi.org/10.1002/prot.340210302>
10. Calamini, B., Morimoto, R. I. (2012) Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr. Top. Med. Chem. 12, 2623-2640. <https://doi.org/10.2174/1568026611212220014>
11. Chappell, T. G., Welch, W. J., Schlossman, D. M. et al. (1986) Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45, 3-13. <https://doi.org/10.1016/0092-8674(86)90532-5>
12. Chen, B., Piel, W. H., Gui, L. et al. (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86, 627-637. <https://doi.org/10.1016/j.ygeno.2005.08.012>
13. Chen, X., Glytsou, C., Zhou, H. et al. (2019) Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 9, 890-909. <https://doi.org/10.1158/2159-8290.CD-19-0117>
14. Ciocca, D. R., Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86. <https://doi.org/10.1379/CSC-99r.1>
15. Cox, D., Ecroyd, H. (2017) The small heat shock proteins αB-crystallin (HSPB5) and Hsp27 (HSPB1) inhibit the intracellular aggregation of α-synuclein. Cell Stress Chaperones 22, 589-600. <https://doi.org/10.1007/s12192-017-0785-x>
16. Craig, E. A. (2018) Hsp70 at the membrane: driving protein translocation. BMC Biol. 16, 11. <https://doi.org/10.1186/s12915-017-0474-3>
17. Deng, J. M., Behringer, R. R. (1995) An insertional mutation in theBTF3 transcription factor gene leads to an early postimplantation lethality in mice. Transgenic Res. 4, 264-269. <https://doi.org/10.1007/BF01969120>
18. Deville, C., Carroni, M., Franke, K. B. et al. (2017) Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Sci. Adv. 3, e1701726. <https://doi.org/10.1126/sciadv.1701726>
19. Dickey, C., Eriksen, J., Kamal, A. et al. (2005) Development of a high throughput drug screening assay for the detection of changes in tau levels – proof of concept with HSP90 inhibitors. Curr. Alzheimer Res. 2, 231-238. <https://doi.org/10.2174/1567205053585927>
20. Dill, K. A., Bromberg, S., Yue, K. et al. (1995) Principles of protein folding – a perspective from simple exact models. Protein Sci. 4, 561-602. <https://doi.org/10.1002/pro.5560040401>
21. Ditzel, L., Löwe, J., Stock, D. et al. (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125-138. <https://doi.org/10.1016/S0092-8674(00)81152-6>
22. Dobson, C. M., Šali, A., Karplus, M. (1998) Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. Engl. 37, 868-893. <https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H>
23. Dou, F., Netzer, W. J., Tanemura, K. et al. (2003) Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. U.S.A. 100, 721-726. <https://doi.org/10.1073/pnas.242720499>
24. Ellis, J. (1987) Proteins as molecular chaperones. Nature 328, 378-379. <https://doi.org/10.1038/328378a0>
25. Ferreiro, D. U., Hegler, J. A., Komives, E. A. et al. (2007) Localizing frustration in native proteins and protein assemblies. Proc. Natl. Acad. Sci. U.S.A. 104, 19819-19824. <https://doi.org/10.1073/pnas.0709915104>
26. Flynn, G. C., Pohl, J., Flocco, M. T. et al. (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353, 726-730. <https://doi.org/10.1038/353726a0>
27. Fonte, V., Kapulkin, W. J., Taft, A. et al. (2002) Interaction of intracellular β amyloid peptide with chaperone proteins. Proc. Natl. Acad. Sci. U.S.A. 99, 9439-9444. <https://doi.org/10.1073/pnas.152313999>
28. Frydman, J., Hartl, F. U. (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272, 1497-1502. <https://doi.org/10.1126/science.272.5267.1497>
29. Frydman J., Nimmesgern E., Ohtsuka, K. et al. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111-117. <https://doi.org/10.1038/370111a0>
30. Gao, Y., Thomas, J. O., Chow, R. L. et al. (1992) A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043-1050. <https://doi.org/10.1016/0092-8674(92)90622-J>
31. Gehrmann, M., Marienhagen, J., Eichholtz-Wirth, H. et al. (2005) Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ. 12, 38-51. <https://doi.org/10.1038/sj.cdd.4401510>
32. Geller, R., Taguwa, S., Frydman, J. (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim. Biophys. Acta 1823, 698-706. <https://doi.org/10.1016/j.bbamcr.2011.11.007>
33. Genevaux, P., Georgopoulos, C., Kelley, W. L. (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840-857. <https://doi.org/10.1111/j.1365-2958.2007.05961.x>
34. Gestaut, D., Roh, S. H., Ma, B. et al. (2019) The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis. Cell 177, 751-765.e15. <https://doi.org/10.1016/j.cell.2019.03.012>
35. Gething, M.-J., Sambrook, J. (1992) Protein folding in the cell. Nature 355, 33-45. <https://doi.org/10.1038/355033a0>
36. Golenhofen, N., Perng, M. D., Quinlan, R. A. et al. (2000) Comparison of the small heat shock proteins αB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem. Cell Biol. 122, 415-425. <https://doi.org/10.1007/s00418-004-0711-z>
37. Göthel, S. F., Marahiel, M. A. (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci. 55, 423-436. <https://doi.org/10.1007/s000180050299>
38. Grave, E., Yokota, S., Yamamoto, S. et al. (2015) Geranylgeranylacetone selectively binds to the HSP70 of Helicobacter pylori and alters its coccoid morphology. Sci. Rep. 5, 13738. <https://doi.org/10.1038/srep13738>
39. Gribaldo, S., Lumia, V., Creti, R. et al. (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181, 434-443. <https://doi.org/10.1128/JB.181.2.434-443.1999>
40. Haas, I. G., Wabl M. (1983) Immunoglobulin heavy chain binding protein. Nature 306, 387-389. <https://doi.org/10.1038/306387a0>
41. Hansen, J. J., Dürr, A., Cournu-Rebeix, I. et al. (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328-1332. <https://doi.org/10.1086/339935>
42. Hartl, F. U., Bracher, A., Hayer-Hartl, M. (2011) Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332. <https://doi.org/10.1038/nature10317>
43. Haslbeck, M., Franzmann, T., Weinfurtner, D. et al. (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12, 842-846. <https://doi.org/10.1038/nsmb993>
44. Hemmingsen, S. M., Woolford, C., Van Der Vies, S. M. et al. (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330-334. <https://doi.org/10.1038/333330a0>
45. Hendrick, J. P., Hartl, F.-U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349-384. <https://doi.org/10.1146/annurev.bi.62.070193.002025>
46. Holt, S. E., Aisner, D. L., Baur, J. et al. (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13, 817-826. <https://doi.org/10.1101/gad.13.7.817>
47. Holtz, W. A., O’Malley, K. L. (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278, 19367-19377. <https://doi.org/10.1074/jbc.M211821200>
48. Horwich, A. L., Fenton, W. A., Chapman E. et al. (2007) Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23, 115-145. <https://doi.org/10.1146/annurev.cellbio.23.090506.123555>
49. Hu, G., Tang, J., Zhang, B. et al. (2006) A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J. Cell Sci. 119, 4117-4126. <https://doi.org/10.1242/jcs.03179>
50. Hundley, H. A., Walter, W., Bairstow S. et al. (2005) Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032-1034. <https://doi.org/10.1126/science.1109247>
51. Hwang, T. S., Han, H. S., Choi, H. K. et al. (2003) Differential, stage‐dependent expression of Hsp70, Hsp110 and Bcl‐2 in colorectal cancer. J. Gastroenterol. Hepatol. 18, 690-700. <https://doi.org/10.1046/j.1440-1746.2003.03011.x>
52. Jahn, T. R., Radford, S. E. (2005) The yin and yang of protein folding. FEBS J. 272, 5962-5970. <https://doi.org/10.1111/j.1742-4658.2005.05021.x>
53. Jakob, U., Gaestel, M., Engel, K. et al. (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517-1520. <https://doi.org/10.1016/S0021-9258(18)53882-5>
54. Jhaveri, K., Taldone, T., Modi, S. et al. (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 1823, 742-755. <https://doi.org/10.1016/j.bbamcr.2011.10.008>
55. Jiang, Y., Rossi, P., Kalodimos, C. G. (2019) Structural basis for client recognition and activity of Hsp40 chaperones. Science 365, 1313-1319. <https://doi.org/10.1126/science.aax1280>
56. Kaiser, C. J. O., Peters, C., Schmid, P. W. N. et al. (2019) The structure and oxidation of the eye lens chaperone αA-crystallin. Nat. Struct. Mol. Biol. 26, 1141-1150. <https://doi.org/10.1038/s41594-019-0332-9>
57. Kampinga, H. H., Bergink, S. (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol. 15, 748-759. <https://doi.org/10.1016/S1474-4422(16)00099-5>
58. Kityk, R., Kopp, J., Mayer, M. P. (2018) Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol. Cell 69, 227-237.e4. <https://doi.org/10.1016/j.molcel.2017.12.003>
59. Koplin, A., Preissler, S., Ilina, Y. et al. (2010) A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189, 57-68. <https://doi.org/10.1083/jcb.200910074>
60. Kragol, G., Hoffmann, R., Chattergoon, M. A. et al. (2002) Identification of crucial residues for the antibacterial activity of the proline‐rich peptide, pyrrhocoricin. Eur. J. Biochem. 269, 4226-4237. <https://doi.org/10.1046/j.1432-1033.2002.03119.x>
61. Kudva, Y. C., Hiddinga, H. J., Butler, P. C. et al. (1997) Small heat shock proteins inhibit in vitro Aβ 1–42 amyloidogenesis. FEBS Lett. 416, 117-121. <https://doi.org/10.1016/S0014-5793(97)01180-0>
62. Lackie, R. E., Maciejewski, A., Ostapchenko, V. G. et al. (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front. Neurosci. 11, 254. <https://doi.org/10.3389/fnins.2017.00254>
63. Lee, G. J., Roseman, A. M., Saibil, H. R. et al. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659-671. <https://doi.org/10.1093/emboj/16.3.659>
64. Lee, J. H., Won, S. M., Suh, J. et al. (2010) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp. Mol. Med. 42, 386. <https://doi.org/10.3858/emm.2010.42.5.040>
65. Lianos, G. D., Alexiou, G. A., Mangano, A. et al. (2015) The role of heat shock proteins in cancer. Cancer Lett. 360, 114-118. <https://doi.org/10.1016/j.canlet.2015.02.026>
66. Lindquist, S., Craig, E. A. (1988) The heat-shock proteins. Annu. Rev. Genet. 22, 631-677. <https://doi.org/10.1146/annurev.ge.22.120188.003215>
67. Makhnevych, T., Houry, W. A. (2012) The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674-682. <https://doi.org/10.1016/j.bbamcr.2011.09.001>
68. Markesich, D. C., Gajewski, K. M., Nazimiec, M. E. et al. (2000) bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machine­ry*. Development 127, 559-572. <https://doi.org/10.1242/dev.127.3.559>
69. Mayer, M. P. (2021) The Hsp70-chaperone machines in bacteria. Front. Mol. Biosci. 8, 694012. <https://doi.org/10.3389/fmolb.2021.694012>
70. Mayer, M. P., Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670-684. <https://doi.org/10.1007/s00018-004-4464-6>
71. Michels, A. A., Kanon, B., Konings, A. W. T. et al. (1997) Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J. Biol. Chem. 272, 33283-33289. <https://doi.org/10.1074/jbc.272.52.33283>
72. Min, W., Angileri, F., Luo, H. et al. (2014) A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model. Sci. Rep. 4, 6688. <https://doi.org/10.1038/srep06688>
73. Mitra, R., Wu, K., Lee, C. et al. (2022) ATP-independent chaperones. Annu. Rev. Biophys. 51, 409-429. <https://doi.org/10.1146/annurev-biophys-090121-082906>
74. Mizzen, L. A., Chang, C., Garrels, J. I. et al. (1989) Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J. Biol. Chem. 264, 20664-20675. <https://doi.org/10.1016/S0021-9258(19)47115-9>
75. Mogk, A., Deuerling, E., Vorderwülbecke, S. et al. (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585-595. <https://doi.org/10.1046/j.1365-2958.2003.03710.x>
76. Morán Luengo, T., Kityk, R., Mayer, M. P. et al. (2018) Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol. Cell 70, 545-552.e9. <https://doi.org/10.1016/j.molcel.2018.03.028>
77. Morshauser, R. C., Wang, H., Flynn, G. C. et al. (1995) The peptide-binding domain of the chaperone protein Hsc70 has an unusual secondary structure topology. Biochemistry 34, 6261-6266. <https://doi.org/10.1021/bi00019a001>
78. Munro, S., Pelham, H. R. B. (1986) An Hsp70-like protein in the ER: identity with the 78 kDa glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291-300. <https://doi.org/10.1016/0092-8674(86)90746-4>
79. Münster, P. N., Marchion, D. C., Basso A. D. et al. (2002) Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′-kinase-AKT-dependent pathway. Cancer Res. 62, 3132-3137.
80. Nover, L., Scharf, K.-D. (1984) Synthesis, modification and structural binding of heat-shock proteins in tomato cell cultures. Eur. J. Biochem. 139, 303-313. <https://doi.org/10.1111/j.1432-1033.1984.tb08008.x>
81. Otaka, M., Yamamoto, S., Ogasawara, K. et al. (2007) The induction mechanism of the molecular chaperone HSP70 in the gastric mucosa by Geranylgeranylacetone (HSP-inducer). Biochem. Biophys. Res. Commun. 353, 399-404. <https://doi.org/10.1016/j.bbrc.2006.12.031>
82. Otto, H., Conz, C., Maier, P. et al. (2005) The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. U.S.A. 102, 10064-10069. <https://doi.org/10.1073/pnas.0504400102>
83. Panaretou, B., Prodromou, C., Roe, S. M. et al. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829-4836. <https://doi.org/10.1093/emboj/17.16.4829>
84. Pappenberger, G., Wilsher, J. A., Mark Roe, S. et al. (2002) Crystal structure of the CCTγ apical domain: implications for substrate binding to the eukaryotic cytosolic chaperonin. J. Mol. Biol. 318, 1367-1379. <https://doi.org/10.1016/S0022-2836(02)00190-0>
85. Parsell, D. A., Kowal, A. S., Lindquist, S. (1994) Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J. Biol. Chem. 269, 4480-4487. <https://doi.org/10.1016/S0021-9258(17)41804-7>
86. Picard, D. (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640-1648. <https://doi.org/10.1007/PL00012491>
87. Pockley, A. G., Shepherd, J., Corton, J. M. (1998) Detection of heat shock protein 70 (HSP70) and anti-HSP70 antibodies in the serum of normal individuals. Immunol. Invest. 27, 367-377. <https://doi.org/10.3109/08820139809022710>
88. Preissler, S., Deuerling, E. (2012) Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274-283. <https://doi.org/10.1016/j.tibs.2012.03.002>
89. Queitsch, C., Hong, S.-W., Vierling, E. et al. (2000) Heat shock protein 101 plays a crucial role in thermotolerance in arabidopsis. Plant Cell 4, 479-492. <https://doi.org/10.1105/tpc.12.4.479>
90. Radons, J. (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21, 379-404. <https://doi.org/10.1007/s12192-016-0676-6>
91. Raina, S., Missiakas, D. (1997) Making and breaking disulfide bonds. Annu. Rev. Microbiol. 51, 179-202. <https://doi.org/10.1146/annurev.micro.51.1.179>
92. Ramirez-Alvarado, M., Kelly, J. W., Dobson C. M., eds. (2010) Protein Misfolding Diseases: Current and Emerging Principles and Therapies. Wiley, Hoboken.
93. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. et al. (2019) The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665-680. <https://doi.org/10.1038/s41580-019-0133-3>
94. Rye, H. S., Burston, S. G., Fenton, W. A. et al. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792-798. <https://doi.org/10.1038/42047>
95. Sanchez, Y., Taulien, J., Borkovich, K. A. et al. (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J. 11, 2357-2364. <https://doi.org/10.1002/j.1460-2075.1992.tb05295.x>
96. Santra, M., Farrell, D. W., Dill, K. A. (2017) Bacterial proteostasis balances energy and chaperone utilization efficiently. Proc. Natl. Acad. Sci. U.S.A. 114, E2654-E2661. <https://doi.org/10.1073/pnas.1620646114>
97. Schirmer, E. C., Glover, J. R., Singer M. A. et al. (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21, 289-296. <https://doi.org/10.1016/S0968-0004(96)10038-4>
98. Schulte, T. W., Blagosklonny, M. V., Romanova, L. et al. (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell. Biol. 16, 5839-5845. <https://doi.org/10.1128/MCB.16.10.5839>
99. Sheffield, W. P., Shore, G. C., Randall S. K. (1990) Mitochondrial precursor protein. Effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J. Biol. Chem. 265, 11069-11076. <https://doi.org/10.1016/S0021-9258(19)38558-8>
100. Spence, J., Cegielska, A., Georgopoulos, C. (1990) Role of Escherichia coli heat shock proteins DnaK and HtpG (C62.5) in response to nutritional deprivation. J. Bacteriol. 172, 7157-7166. <https://doi.org/10.1128/jb.172.12.7157-7166.1990>
101. Squires, C. L., Ross, B. M., Squires, C. et al. (1991) C1pB is the Escherichia coli heat shock protein F84. J. Bacteriol. 173, 4254-4262. <https://doi.org/10.1128/jb.173.14.4254-4262.1991>
102. Stefani, M., Dobson, C. M. (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678-699. <https://doi.org/10.1007/s00109-003-0464-5>
103. Stege, G. J. J., Renkawek, K., Overkamp, P. S. G. et al. (1999) The molecular chaperone αB-crystallin enhances amyloid β neurotoxicity. Biochem. Biophys. Res. Commun. 262, 152-156. <https://doi.org/10.1006/bbrc.1999.1167>
104. Teter, S. A., Houry, W. A., Ang, D. et al. (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 75, 755-765. <https://doi.org/10.1016/S0092-8674(00)80787-4>
105. Thomas, X., Campos, L., Mounier, C. et al. (2005) Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk. Res. 29, 1049-1058. <https://doi.org/10.1016/j.leukres.2005.02.010>
106. Thulasiraman, V., Fang, C. F., Frydman, J. (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85-95. <https://doi.org/10.1093/emboj/18.1.85>
107. Todd, M. J., Viitanen, P. V., Lorimer, G. H. (1994) Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659-666. <https://doi.org/10.1126/science.7913555>
108. Vainberg, I. E., Lewis, S. A., Rommelaere, H. et al. (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863-873. <https://doi.org/10.1016/S0092-8674(00)81446-4>
109. Vogel, M., Mayer, M. P., Bukau, B. (2006) Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem. 281, 38705-38711. <https://doi.org/10.1074/jbc.M609020200>
110. Wandinger, S. K., Richter, K., Buchner, J. (2008) The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473-18477. <https://doi.org/10.1074/jbc.R800007200>
111. Wegele, H., Wandinger, S. K., Schmid, A. B. et al. (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J. Mol. Biol. 356, 802-811. <https://doi.org/10.1016/j.jmb.2005.12.008>
112. Whitesell, L., Lindquist, S. L. (2005) HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761-772. <https://doi.org/10.1038/nrc1716>
113. Wiech, H., Buchner, J., Zimmermann, R. et al. (1992) Hsp90 chaperones protein folding in vitro. Nature 358, 169-170. <https://doi.org/10.1038/358169a0>
114. Williams, D. B. (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell Sci. 119, 615-623. <https://doi.org/10.1242/jcs.02856>
115. Wortmann, S. B., Ziętkiewicz, S., Kousi, M. et al. (2015) CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am. J. Hum. Genet. 96, 245-257. <https://doi.org/10.1016/j.ajhg.2014.12.013>
116. Wu, D., Liu, Y., Dai, Y. et al. (2023) Comprehensive structural characterization of the human AAA+ disaggregase CLPB in the apo- and substrate-bound states reveals a unique mode of action driven by oligomerization. PLoS Biol. 21, e3001987. <https://doi.org/10.1371/journal.pbio.3001987>
117. Wu, N., He, L., Cui, P. et al. (2015) Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front. Microbiol. 6, 1003.
118. Xu, Z., Horwich, A. L., Sigler, P. B. (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741-750. <https://doi.org/10.1038/41944>
119. Yaffe, M. B., Farr, G. W., Miklos, D. et al. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245-248. <https://doi.org/10.1038/358245a0>
120. Zhang, Y., Sinning, I., Rospert, S. (2017) Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC. Nat. Struct. Mol. Biol. 24, 611-619. <https://doi.org/10.1038/nsmb.3435>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive