Fol. Biol. 2024, 70, 179-188
https://doi.org/10.14712/fb2024070030179
Docosahexaenoic Acid Promotes Eryptosis and Haemolysis through Oxidative Stress/Calcium/Rac1 GTPase Signalling
References
1. 2020) Stimulation of calcium influx and CK1α by NF-κB antagonist [6]-Gingerol reprograms red blood cell longevity. J. Food Biochem. 45, 1-9.
, H. S., Alsughayyir, J., Akiel, M. et al. (
2. 2023) Tamoxifen induces eryptosis through calcium accumulation and oxidative stress. Med. Oncol. 40, 1-11.
< , M. A., Alyousef, A. M., Alsughayyir, J. (https://doi.org/10.1007/s12032-023-02205-4>
3. 2023a) Rosmarinic acid elicits calcium-dependent and sucrose-sensitive eryptosis and hemolysis through p38 MAPK, CK1α, and PKC. Molecules 28, 1-17.
, S., Alfhili, M., Alsughayyir, J. (
4. 2023b) Eriocitrin disrupts erythrocyte membrane asymmetry through oxidative stress and calcium signaling and the activation of casein kinase 1 α and Rac1 GTPase. Pharmaceuticals (Basel) 16, 1-14.
< , S., Alsughayyir, J., Alfhili, M. (https://doi.org/10.3390/ph16121681>
5. 2023c) Stimulation of hemolysis and eryptosis by α-mangostin through Rac1 GTPase and oxidative injury in human red blood cells. Molecules 28, 1-12.
, S., Alsughayyir, J., Alfhili, M. (
6. 2023) Anemia profiles in cancer patients: prevalence, contributing factors, and insights from a retrospective study at a single cancer center in Saudi Arabia. Cureus 15, e42400.
, A. M., Ahmed, F., Badheeb, M. A. et al. (
7. 2020) Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion. Prostaglandins Leukot. Essent. Fatty Acids 156, 102024.
< , I., Lee, J., Sneddon, A. A. et al. (https://doi.org/10.1016/j.plefa.2019.102024>
8. 2014) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851, 469-484.
< , P. C. (https://doi.org/10.1016/j.bbalip.2014.08.010>
9. 2011) Docosahexaenoic acid selectively induces human prostate cancer cell sensitivity to oxidative stress through modulation of NF-κB. Prostate 71, 1420-1428.
< , D. A., Price, R. S., Apte, S. S. et al. (https://doi.org/10.1002/pros.21359>
10. 2016) Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J. Clin. Med. 5, 15.
< , D., Velotti, F. (https://doi.org/10.3390/jcm5020015>
11. 2015) Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol. Dis. 55, 48-55.
< , A. A., Elderdery, A. Y., Elbashir, L. M. et al. (https://doi.org/10.1016/j.bcmd.2015.03.014>
12. 2013) Docosahexaenoic and eicosapentaenoic acid supplementation does not exacerbate oxidative stress or intravascular haemolysis in homozygous sickle cell patients. Prostaglandins Leukot. Essent. Fatty Acids 89, 305-311.
< , A. A., Ghebremeskel, K., Mariniello, K. et al. (https://doi.org/10.1016/j.plefa.2013.09.006>
13. 2020) Biochemical and therapeutic effects of Omega-3 fatty acids in sickle cell disease. Complement. Ther. Med. 52, 102482.
< , A. A., Lopez-Toledano, M. A., Heeney, M. M. (https://doi.org/10.1016/j.ctim.2020.102482>
14. 2009) Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: the Heart and Soul Study. Atherosclerosis 205, 538-543.
< , R., Harris, W. S., Garg, S. et al. (https://doi.org/10.1016/j.atherosclerosis.2008.12.013>
15. 2013) A disease-specific enteral nutrition formula improves nutritional status and functional performance in patients with head and neck and esophageal cancer undergoing chemoradiotherapy: results of a randomized, controlled, multicenter trial. Cancer 119, 3343-3353.
< , R., Lewitzki, V., Kuhnt, T. et al. (https://doi.org/10.1002/cncr.28197>
16. 2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front. Cell Dev. Biol. 8, 1-9.
< , M., Lang, F. (https://doi.org/10.3389/fcell.2020.00597>
17. 2015) Red blood cell fatty acids and biomarkers of inflammation: a cross-sectional study in a community-based cohort. Atherosclerosis 240, 431-436.
< , J. D., Rahmanc, F., Laceya, S. et al. (https://doi.org/10.1016/j.atherosclerosis.2015.03.043>
18. 2015) Effect of individual omega-3 fatty acids on the risk of prostate cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. J. Epidemiol. 25, 261-274.
< , Y. Q., Zheng, J. S., Yang, B. et al. (https://doi.org/10.2188/jea.JE20140120>
19. 2013) EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ROS accumulation, caspase-8 activation, and autophagy induction. J. Cell. Biochem. 203, 192-203.
< , M., Kang, K. S., Okada, K. et al. (https://doi.org/10.1002/jcb.24354>
20. 2023) Comparative effectiveness of adding omega-3 and Manuka honey combination to conventional therapy in preventing and treating oxidative stress in pediatric β-thalassemia major – a randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci. 27, 6058-6070.
, M., Abraham, I., Meabed, M. et al. (
21. 2013) Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood 121, 2099-2107.
< , A., Pushkaran, S., Konstantinidis, D. G. et al. (https://doi.org/10.1182/blood-2012-07-441188>
22. 2023) An open-label, multicenter, phase 2 study of a food enriched with docosahexaenoic acid in adults with sickle cell disease. Prostaglandins Leukot. Essent. Fatty Acids 193, 102574.
< , K. V., Bhatnagar, S. K., Tomlinson, L. et al. (https://doi.org/10.1016/j.plefa.2023.102574>
23. 2013) Association between n-3 polyunsaturated fatty acid content of red blood cells and inflammatory biomarkers in patients with peripheral artery disease. J. Vasc. Surg. 58, 1283-1290.
< , S. M., Conte, M. S., Nosova, E. et al. (https://doi.org/10.1016/j.jvs.2013.05.024>
24. 2019) Protein PEGylation for cancer therapy: bench to bedside. J. Cell Commun. Signal. 13, 319-330.
< , V., Bhavanasi, S., Quadir, M. et al. (https://doi.org/10.1007/s12079-018-0492-0>
25. 2008) Dual effects of Ginkgo biloba leaf extract on human red blood cells. Basic Clin. Pharmacol. Toxicol. 104, 138-144.
< , J., Lin, J., Li, J. et al. (https://doi.org/10.1111/j.1742-7843.2008.00354.x>
26. 2009) Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot. Essent. Fatty Acids 81, 199-204.
< , B. J. (https://doi.org/10.1016/j.plefa.2009.05.016>
27. 1996) Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am. J. Clin. Nutr. 63, 267-272.
< , D. A., Pinder, A. C., Piper, Z. et al. (https://doi.org/10.1093/ajcn/63.2.267>
28. 2006) Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton. Blood 108, 3637-3645.
< , T. A., Pushkaran, S., Mohandas, N. et al. (https://doi.org/10.1182/blood-2006-03-005942>
29. 2021) Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EClinicalMedicine 38, 1-10.
< , S. U., Lone, A. N., Khan, M. S. et al. (https://doi.org/10.1016/j.eclinm.2021.100997>
30. 2010) Rac GTPases in erythroid biology. Transfus. Clin. Biol. 17, 126-130.
< , D., George, A., Kalfa, T. A. (https://doi.org/10.1016/j.tracli.2010.05.002>
31. 2023) DHA/EPA (Omega-3) and LA/GLA (Omega-6) as bioactive molecules in neurodegenerative diseases. Int. J. Mol. Sci. 24, 1-21.
< , C., Fyrilla, M., Stephanou, A. et al. (https://doi.org/10.3390/ijms241310717>
32. 2015) Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin. Cell Dev. Biol. 39, 35-42.
< , E., Lang, F. (https://doi.org/10.1016/j.semcdb.2015.01.009>
33. 2012) Physiology and pathophysiology of eryptosis. Transfus. Med. Hemother. 39, 308-314.
< , F., Lang, E., Fller, M. (https://doi.org/10.1159/000342534>
34. 2015) Eryptosis-inducing activity of bisphenol A and its analogues in human red blood cells (in vitro study). J. Hazard. Mater. 307, 328-335.
< , A., Cyrkler, M., Bukowska, B. et al. (https://doi.org/10.1016/j.jhazmat.2015.12.057>
35. 2019) The influence of omega-3 fatty acids on skeletal muscle protein turnover in health, disuse, and disease. Front. Nutr. 6, 1-13.
< , C., Calder, P. C., Nunes, E. A. (https://doi.org/10.3389/fnut.2019.00144>
36. 2001) Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations. Clin. Sci. 100, 91-100.
< , E. A., Thies, F., Wallace, F. A. et al. (https://doi.org/10.1042/cs1000091>
37. 2017) A critical review on the effect of docosahexaenoic acid (Dha) on cancer cell cycle progression. Int. J. Mol. Sci. 18, 1-14.
< , M., Baker, K., Postovit, L. M. et al. (https://doi.org/10.3390/ijms18081784>
38. 2011) Pilot study of omega-3 fatty acid supplements in sickle cell disease. APMIS 119, 442-448.
< , I., Ibegbulam, O., Duru, A. et al. (https://doi.org/10.1111/j.1600-0463.2011.02751.x>
39. 2018) Docoxahexaenoic acid induces apoptosis of pancreatic cancer cells by suppressing activation of STAT3 and NF-κB. Nutrients 10, 1-14.
, M., Lim, J. W., Kim, H. (
40. 2018) Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci. Rep. 8, 1-12.
, N., Luzete, B. C., Kiffer, L. F. M. V. et al. (
41. 2016) A comprehensive review on eryptosis. Cell. Physiol. Biochem. 39, 1977-2000.
< , E., Du Plooy, J. N., Bester, J. (https://doi.org/10.1159/000447895>
42. 2020) Plasma oxidative status in preterm infants receiving LCPUFA supplementation: a pilot study. Nutrients 12, 1-15.
, D., de Pablo, Á. L. L., López-Giménez, M. R. et al. (
43. 2023) Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 24, 576-596.
< , T., Nagata, S. (https://doi.org/10.1038/s41580-023-00604-z>
44. 2016) Parenteral MCT/ω-3 polyunsaturated fatty acid-enriched intravenous fat emulsion is associated with cytokine and fatty acid profiles consistent with attenuated inflammatory response in preterm neonates: a randomized, double-blind clinical trial. Nutr. Clin. Pract. 31, 235-244.
< , M., Konstantinou, D., Agakidis, C. et al. (https://doi.org/10.1177/0884533615602011>
45. 2019) Interactions of fatty acids, nonsteroidal anti-inflammatory drugs, and coxibs with the catalytic and allosteric subunits of cyclooxygenases-1 and -2. J. Biol. Chem. 294, 1697-1705.
< , W. L., Malkowski, M. G. (https://doi.org/10.1074/jbc.TM118.006295>
46. 2015) Omega-3 polyunsaturated fatty acids trigger cell cycle arrest and induce apoptosis in human neuroblastoma LA-N-1 cells. Nutrients 7, 6956-6973.
< , W. W., Liu, W. N., Leung, K. N. (https://doi.org/10.3390/nu7085319>
47. 2009) The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur. J. Cancer 45, 2077-2086.
< , L., Mann, C., Metcalfe, M. et al. (https://doi.org/10.1016/j.ejca.2009.04.026>
48. 2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids 126, 1-27.
< , W., Wassall, S. R. (https://doi.org/10.1016/S0009-3084(03)00101-4>
49. 2013) Docosahexaenoic acid (DHA) induces apoptosis in human hepatocellular carcinoma cells. Int. J. Clin. Exp. Pathol. 6, 281-289.
, S. N., Jia, W. D., Chen, H. et al. (
50. 2023) Casein kinase 1α mediates eryptosis: a review. Apoptosis 28, 1-19.
< , A., Onishchenko, A. (https://doi.org/10.1007/s10495-022-01776-3>
51. 2007) Antiadhesion effects of docosahexaenoic acid on normal human peritoneal and adhesion fibroblasts. Fertil. Steril. 88, 1657-1662.
< , R., Saed, G. M., Diamond, M. P. (https://doi.org/10.1016/j.fertnstert.2007.01.123>
52. 2018) Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Rev. 37, 545-555.
< , M., Hull, M. A. (https://doi.org/10.1007/s10555-018-9744-y>
53. 2020) Docosahexaenoic acid (DHA), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. Am. J. Cancer Res. 10, 4450-4463.
, L., Yin, Y., Pierce, S. R. et al. (
54. 2014) Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo. J. Nutr. Biochem. 25, 104-110.
< , M., Wang, Q., Zhao, J. et al. (https://doi.org/10.1016/j.jnutbio.2013.09.008>
55. 2009) Docosahexaenoic acid induces dose dependent cell death in an early undifferentiated subtype of acute myeloid leukemia cell line. Cancer Biol. Ther. 8, 331-337.
< , T., Porada, C. D., Pardini, R. S. et al. (https://doi.org/10.4161/cbt.8.4.7334>
56. 2012) Protein kinase CK1 α regulates erythrocyte survival. Cell. Physiol. Biochem. 13, 171-180.
< , C., Eberhard, M., Jilani, K. et al. (https://doi.org/10.1159/000337598>
57. 2015) Effects of aggregation on blood sedimentation and conductivity. PLoS One 10, 1-25.
< , A., Yang, S. (https://doi.org/10.1371/journal.pone.0129337>
58. 2021) Inhibition of Rac1 GTPase decreases vascular oxidative stress, improves endothelial function, and attenuates atherosclerosis development in mice. Front. Cardiovasc. Med. 8, 1-11.
< , S., Goody, P. R., Oelze, M. et al. (https://doi.org/10.3389/fcvm.2021.680775>