Fol. Biol. 2024, 70, 196-208
https://doi.org/10.14712/fb2024070040196
CD8+ T-Cell Signatures as Prognostic and Immunotherapy Response Predictors in Non-Small Cell Lung Cancer
References
1. 2014) ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234-239.
< , S., Andorf, S., Gomes, L. et al. (https://doi.org/10.1007/s12026-014-8516-1>
2. 2013) InnateDB: systems biology of innate immunity and beyond – recent updates and continuing curation. Nucleic Acids Res. 41, D1228-D1233.
< , K., Foroushani, A. K., Laird, M. R. et al. (https://doi.org/10.1093/nar/gks1147>
3. 2019) The immune response-related mutational signatures and driver genes in non-small-cell lung cancer. Cancer Sci. 110, 2348-2356.
< , H., Chong, W., Teng, C. et al. (https://doi.org/10.1111/cas.14113>
4. 2023) Global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Lett. 10, 451.
, B. S., Parang, K. (
5. 2019) Correlations between the immune-related adverse events spectrum and efficacy of anti-PD1 immunotherapy in NSCLC patients. Clin. Lung Cancer 20, 237-247.e1.
< , A., Chiari, R., Ricciuti, B. et al. (https://doi.org/10.1016/j.cllc.2019.02.006>
6. 2015) PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br. J. Cancer 112, 95-102.
< , A., Andreozzi, M., Ludovini, V. et al. (https://doi.org/10.1038/bjc.2014.555>
7. 2015) Stromal CD8+ T-cell density – a promising supplement to TNM staging in non-small cell lung cancer. Clin. Cancer Res. 21, 2635-2643.
< , T., Hald, S. M., Paulsen, E. E. et al. (https://doi.org/10.1158/1078-0432.CCR-14-1905>
8. 2017) Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. J. Exp. Clin. Cancer Res. 36, 123.
< , X., Liu, H., Zhang, Z. et al. (https://doi.org/10.1186/s13046-017-0594-1>
9. 2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80.
< , R. C., Carey, V. J., Bates, D. M. et al. (https://doi.org/10.1186/gb-2004-5-10-r80>
10. Barrett, T., Wilhite, S. E., Ledoux, P. et al. (2013) NCBI GEO: archive for functional genomics data sets – update.
<https://doi.org/10.1093/nar/gks1193>
11. 2023) TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumour microenvironment. Nucleic Acids Res. 51, D1425-D1431.
< , Y., Wang, Y., Dong, X. et al. (https://doi.org/10.1093/nar/gkac959>
12. 2019) The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene 38, 5551-5565.
< , M., Jin, Q., Chen, C. et al. (https://doi.org/10.1038/s41388-019-0817-3>
13. 2005) Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105.
< , P. J., Zheng, Y. (https://doi.org/10.1111/j.0006-341X.2005.030814.x>
14. 2016) Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients. Oncotarget 7, 55890-55899.
< , C., Jin, Y. H., You, Z. et al. (https://doi.org/10.18632/oncotarget.10151>
15. 2020) Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328-1334.
< , S., Lowery, F. J., Copeland, A. R. et al. (https://doi.org/10.1126/science.abb9847>
16. 2021) Single-cell RNA sequencing of psoriatic skin identifies pathogenic Tc17 cell subsets and reveals distinctions between CD8+ T cells in autoimmunity and cancer. J. Allergy Clin. Immunol. 147, 2370-2380.
< , J., Chang, H. W., Huang, Z. M. et al. (https://doi.org/10.1016/j.jaci.2020.11.028>
17. 2020) NSCLC immunotherapy efficacy and antibiotic use: a systematic review and meta-analysis. J. Thorac. Oncol. 15, 1147-1159.
< , L., Cervesi, J., Duhalde, L. et al. (https://doi.org/10.1016/j.jtho.2020.03.002>
18. 2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544-548.
< , S., Turley, S. J., Nickles, D. et al. (https://doi.org/10.1038/nature25501>
19. 2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773-782.
< , A. M., Steen, C. B., Liu, C. L. et al. (https://doi.org/10.1038/s41587-019-0114-2>
20. 2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15, 712-729.
< , O. C., Joyce, J. A. (https://doi.org/10.1038/nrc4027>
21. 2022) CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209-223.
< , M., Schietinger, A. (https://doi.org/10.1038/s41577-021-00574-3>
22. 2020) Mechanism and potential predictive biomarkers of immune checkpoint inhibitors in NSCLC. Biomed. Pharmacother. 127, 109996.
< , J., Jiang, M., Wang, L. et al. (https://doi.org/10.1016/j.biopha.2020.109996>
23. 2021) Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 124, 359-367.
< , H., Orhan, A., Christensen, J. P. et al. (https://doi.org/10.1038/s41416-020-01048-4>
24. 2015) PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS One 10, e0136023.
< , L. H., Kümmel, A., Görlich, D. et al. (https://doi.org/10.1371/journal.pone.0136023>
25. 2022) Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 1301-1311.
< , D. R., Faivre-Finn, C., Gray, J. E. et al. (https://doi.org/10.1200/JCO.21.01308>
26. 2015) Cathepsin L targeting in cancer treatment. Pharmacol. Ther. 155, 105-116.
< , D. R., Siemann, D. W. (https://doi.org/10.1016/j.pharmthera.2015.08.007>
27. 2015) Epiregulin as a therapeutic target in non-small-cell lung cancer. Lung Cancer (Auckl.) 6, 91-98.
, N., Kaira, K. (
28. 2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600-605.
< , T., Morita, S., Plichta, D. R. et al. (https://doi.org/10.1038/s41586-019-0878-z>
29. 1997) The lasso method for variable selection in the Cox model. Stat. Med. 16, 385-395.
< , R. (https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3>
30. 2023) TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumour microenvironment. Nucleic Acids Res. 51, D1425-D1431.
< , Y., Wang, Y., Dong, X. et al. (https://doi.org/10.1093/nar/gkac959>
31. 2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281-285.
< , G. P., Kin, K., Lynch, V. J. (https://doi.org/10.1007/s12064-012-0162-3>
32. 2012) Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J. Biol. Chem. 287, 32512-32524.
< , C. Y., Chen, C. L., Tseng, Y. L. et al. (https://doi.org/10.1074/jbc.M112.351957>
33. Wang, C. Y., Lin, C. F. (2014) Annexin A2: its molecular regulation and cellular expression in cancer development. Dis. Markers 2014,
<https://doi.org/10.1155/2014/308976>
34. 2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.
< , G., Wang, L. G., Han, Y. et al. (https://doi.org/10.1089/omi.2011.0118>
35. 2012) Gene silencing of EREG mediated by DNA methylation and histone modification in human gastric cancers. Lab. Invest. 92, 1033-1044.
< , J., Song, S. H., Park, J. et al. (https://doi.org/10.1038/labinvest.2012.61>
36. 2010) A high number of CD8+ T cells infiltrated in NSCLC tissues is associated with a favorable prognosis. Appl. Immunohistochem. Mol. Morphol. 18, 24-28.
< , X., Xia, X., Wang, C. et al. (https://doi.org/10.1097/PAI.0b013e3181b6a741>