Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 196-208

https://doi.org/10.14712/fb2024070040196

CD8+ T-Cell Signatures as Prognostic and Immunotherapy Response Predictors in Non-Small Cell Lung Cancer

Tienan Zhao, Sarinder Kaur Dhillon

Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Received April 2024
Accepted October 2024

References

1. Bhattacharya, S., Andorf, S., Gomes, L. et al. (2014) ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58, 234-239. <https://doi.org/10.1007/s12026-014-8516-1>
2. Breuer, K., Foroushani, A. K., Laird, M. R. et al. (2013) InnateDB: systems biology of innate immunity and beyond – recent updates and continuing curation. Nucleic Acids Res. 41, D1228-D1233. <https://doi.org/10.1093/nar/gks1147>
3. Chen, H., Chong, W., Teng, C. et al. (2019) The immune response-related mutational signatures and driver genes in non-small-cell lung cancer. Cancer Sci. 110, 2348-2356. <https://doi.org/10.1111/cas.14113>
4. Chhikara, B. S., Parang, K. (2023) Global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Lett. 10, 451.
5. Cortellini, A., Chiari, R., Ricciuti, B. et al. (2019) Correlations between the immune-related adverse events spectrum and efficacy of anti-PD1 immunotherapy in NSCLC patients. Clin. Lung Cancer 20, 237-247.e1. <https://doi.org/10.1016/j.cllc.2019.02.006>
6. D’incecco, A., Andreozzi, M., Ludovini, V. et al. (2015) PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br. J. Cancer 112, 95-102. <https://doi.org/10.1038/bjc.2014.555>
7. Donnem, T., Hald, S. M., Paulsen, E. E. et al. (2015) Stromal CD8+ T-cell density – a promising supplement to TNM staging in non-small cell lung cancer. Clin. Cancer Res. 21, 2635-2643. <https://doi.org/10.1158/1078-0432.CCR-14-1905>
8. Feng, X., Liu, H., Zhang, Z. et al. (2017) Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. J. Exp. Clin. Cancer Res. 36, 123. <https://doi.org/10.1186/s13046-017-0594-1>
9. Gentleman, R. C., Carey, V. J., Bates, D. M. et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80. <https://doi.org/10.1186/gb-2004-5-10-r80>
10. Barrett, T., Wilhite, S. E., Ledoux, P. et al. (2013) NCBI GEO: archive for functional genomics data sets – update. <https://doi.org/10.1093/nar/gks1193>
11. Han, Y., Wang, Y., Dong, X. et al. (2023) TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumour microenvironment. Nucleic Acids Res. 51, D1425-D1431. <https://doi.org/10.1093/nar/gkac959>
12. He, M., Jin, Q., Chen, C. et al. (2019) The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene 38, 5551-5565. <https://doi.org/10.1038/s41388-019-0817-3>
13. Heagerty, P. J., Zheng, Y. (2005) Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105. <https://doi.org/10.1111/j.0006-341X.2005.030814.x>
14. Jing, C., Jin, Y. H., You, Z. et al. (2016) Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients. Oncotarget 7, 55890-55899. <https://doi.org/10.18632/oncotarget.10151>
15. Krishna, S., Lowery, F. J., Copeland, A. R. et al. (2020) Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328-1334. <https://doi.org/10.1126/science.abb9847>
16. Liu, J., Chang, H. W., Huang, Z. M. et al. (2021) Single-cell RNA sequencing of psoriatic skin identifies pathogenic Tc17 cell subsets and reveals distinctions between CD8+ T cells in autoimmunity and cancer. J. Allergy Clin. Immunol. 147, 2370-2380. <https://doi.org/10.1016/j.jaci.2020.11.028>
17. Lurienne, L., Cervesi, J., Duhalde, L. et al. (2020) NSCLC immunotherapy efficacy and antibiotic use: a systematic review and meta-analysis. J. Thorac. Oncol. 15, 1147-1159. <https://doi.org/10.1016/j.jtho.2020.03.002>
18. Mariathasan, S., Turley, S. J., Nickles, D. et al. (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544-548. <https://doi.org/10.1038/nature25501>
19. Newman, A. M., Steen, C. B., Liu, C. L. et al. (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773-782. <https://doi.org/10.1038/s41587-019-0114-2>
20. Olson, O. C., Joyce, J. A. (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15, 712-729. <https://doi.org/10.1038/nrc4027>
21. Philip, M., Schietinger, A. (2022) CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209-223. <https://doi.org/10.1038/s41577-021-00574-3>
22. Qu, J., Jiang, M., Wang, L. et al. (2020) Mechanism and potential predictive biomarkers of immune checkpoint inhibitors in NSCLC. Biomed. Pharmacother. 127, 109996. <https://doi.org/10.1016/j.biopha.2020.109996>
23. Raskov, H., Orhan, A., Christensen, J. P. et al. (2021) Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 124, 359-367. <https://doi.org/10.1038/s41416-020-01048-4>
24. Schmidt, L. H., Kümmel, A., Görlich, D. et al. (2015) PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS One 10, e0136023. <https://doi.org/10.1371/journal.pone.0136023>
25. Spigel, D. R., Faivre-Finn, C., Gray, J. E. et al. (2022) Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 1301-1311. <https://doi.org/10.1200/JCO.21.01308>
26. Sudhan, D. R., Siemann, D. W. (2015) Cathepsin L targeting in cancer treatment. Pharmacol. Ther. 155, 105-116. <https://doi.org/10.1016/j.pharmthera.2015.08.007>
27. Sunaga, N., Kaira, K. (2015) Epiregulin as a therapeutic target in non-small-cell lung cancer. Lung Cancer (Auckl.) 6, 91-98.
28. Tanoue, T., Morita, S., Plichta, D. R. et al. (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600-605. <https://doi.org/10.1038/s41586-019-0878-z>
29. Tibshirani, R. (1997) The lasso method for variable selection in the Cox model. Stat. Med. 16, 385-395. <https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3>
30. Han, Y., Wang, Y., Dong, X. et al. (2023) TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumour microenvironment. Nucleic Acids Res. 51, D1425-D1431. <https://doi.org/10.1093/nar/gkac959>
31. Wagner, G. P., Kin, K., Lynch, V. J. (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281-285. <https://doi.org/10.1007/s12064-012-0162-3>
32. Wang, C. Y., Chen, C. L., Tseng, Y. L. et al. (2012) Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J. Biol. Chem. 287, 32512-32524. <https://doi.org/10.1074/jbc.M112.351957>
33. Wang, C. Y., Lin, C. F. (2014) Annexin A2: its molecular regulation and cellular expression in cancer development. Dis. Markers 2014, <https://doi.org/10.1155/2014/308976>
34. Yu, G., Wang, L. G., Han, Y. et al. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. <https://doi.org/10.1089/omi.2011.0118>
35. Yun, J., Song, S. H., Park, J. et al. (2012) Gene silencing of EREG mediated by DNA methylation and histone modification in human gastric cancers. Lab. Invest. 92, 1033-1044. <https://doi.org/10.1038/labinvest.2012.61>
36. Zhuang, X., Xia, X., Wang, C. et al. (2010) A high number of CD8+ T cells infiltrated in NSCLC tissues is associated with a favorable prognosis. Appl. Immunohistochem. Mol. Morphol. 18, 24-28. <https://doi.org/10.1097/PAI.0b013e3181b6a741>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive