Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 219-228

https://doi.org/10.14712/fb2024070040219

Effects of Different Light Environments with Varying Spectral Composition on the Axial Lengths and Scleral Specificity Protein 1 and Collagen Type I Expression in Juvenile Guinea Pigs

Jianbao Yuan1, Yuliang Wang2, Xinyu Xu2, Mei Yang1, Yipeng Fan1, Xiaopan Shi1, Lulu Sun1, Mingyu Shan1, Lei Ma1

1Department of Ophthalmology, Clinical College of Yizheng People’s Hospital, Jiangsu Health Vocational College, Yangzhou, Jiangsu, China
2Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China

Received June 2024
Accepted October 2024

References

1. Beishline, K., Azizkhan-Clifford, J. (2015) Sp1 and the ‘hallmarks of cancer.’ FEBS J. 282, 224-258. <https://doi.org/10.1111/febs.13148>
2. Bourne, R. R., Stevens, G. A., White, R. A. et al. (2013) Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob. Health 1, e339-e349. <https://doi.org/10.1016/S2214-109X(13)70113-X>
3. Chakraborty, R., Landis, E. G., Mazade, R. et al. (2022) Melanopsin modulates refractive development and myopia. Exp. Eye Res. 214. <https://doi.org/10.1016/j.exer.2021.108866>
4. Chuang, A. Y. (2017) How to effectively manage myopia. Taiwan J. Ophthalmol. 7, 44-47. <https://doi.org/10.4103/tjo.tjo_24_17>
5. Flanagan, J., Fricke, T., Morjaria, P. et al. (2019) Myopia: a growing epidemic. Community Eye Health 32, 9.
6. Foulds, W. S., Barathi, V. A., Luu, C. D. (2013) Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Invest. Ophthalmol. Vis. Sci. 54, 8004-8012. <https://doi.org/10.1167/iovs.13-12476>
7. Frangogiannis, N. (2020) Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 217, e20190103. <https://doi.org/10.1084/jem.20190103>
8. Garcia, M. B., Jha, A. K., Healy, K. E. et al. (2017) A bioengineering approach to myopia control tested in a guinea pig model. Invest. Ophthalmol. Vis. Sci. 58, 1875-1886. <https://doi.org/10.1167/iovs.16-20694>
9. Gawne, T. J., Siegwart, J. T. Jr., Ward, A. H. et al. (2017) The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp. Eye Res. 155, 75-84. <https://doi.org/10.1016/j.exer.2016.12.004>
10. Gentle, A., Liu, Y., Martin, J. E. et al. (2003) Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia. J. Biol. Chem. 278, 16587-16594. <https://doi.org/10.1074/jbc.M300970200>
11. Hannibal, J., Georg, B., Fahrenkrug, J. (2013) Differential expression of melanopsin mRNA and protein in brown Norwegian rats. Exp. Eye Res. 106, 55-63. <https://doi.org/10.1016/j.exer.2012.11.006>
12. Hassen, G. W., Chirurgi, R., Kalantari, H. (2017) Blue sclera secondary to severe iron deficiency anemia. QJM 110, 835-836. <https://doi.org/10.1093/qjmed/hcx163>
13. He, M., Xiang, F., Zeng, Y. et al. (2015) Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314, 1142-1148. <https://doi.org/10.1001/jama.2015.10803>
14. Hellweg, C. E., Spitta, L. F., Henschenmacher, B. et al. (2016) Transcription factors in the cellular response to charged particle exposure. Front. Oncol. 6, 61. <https://doi.org/10.3389/fonc.2016.00061>
15. Holden, B. A., Fricke, T. R., Wilson, D. A. et al. (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123, 1036-1042. <https://doi.org/10.1016/j.ophtha.2016.01.006>
16. Hu, H., Zhao, G., Wu, R. et al. (2018) Axial length/corneal radius of curvature ratio assessment of posterior sclera reinforcement for pathologic myopia. Ophthalmologica 239, 128-132. <https://doi.org/10.1159/000484485>
17. Hu, Y. Z., Yang, H., Li, H. et al. (2022) Low color temperature artificial lighting can slow myopia development: long-term study using juvenile monkeys. Zool. Res. 43, 229-233. <https://doi.org/10.24272/j.issn.2095-8137.2021.401>
18. Ikuno, Y. (2017) Overview of the complications of high myopia. Retina 37, 2347-2351. <https://doi.org/10.1097/IAE.0000000000001489>
19. Jiang, B., Wu, Z. Y., Zhu, Z. C. et al. (2017) Expression and role of specificity protein 1 in the sclera remodeling of experimental myopia in guinea pigs. Int. J. Ophthalmol. 10, 550-554.
20. Jiang, L., Zhang, S., Schaeffel, F. et al. (2014) Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res. 94, 24-32. <https://doi.org/10.1016/j.visres.2013.10.020>
21. Jobling, A. I., Nguyen, M., Gentle, A. et al. (2004) Isoform-specific changes in scleral transforming growth factor-β expression and the regulation of collagen synthesis during myopia progression. J. Biol. Chem. 279, 18121-18126. <https://doi.org/10.1074/jbc.M400381200>
22. Kröger, R. H., Fernald, R. D. (1994) Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Res. 34, 1807-1814. <https://doi.org/10.1016/0042-6989(94)90305-0>
23. Li, J., Du, S., Sheng, X. et al. (2016a) MicroRNA-29b inhibits endometrial fibrosis by regulating the Sp1-TGF-β1/Smad-CTGF axis in a rat model. Reprod. Sci. 23, 386-394. <https://doi.org/10.1177/1933719115602768>
24. Li, M., Yuan, Y., Chen, Q. et al. (2016b) Expression of Wnt/β-catenin signaling pathway and its regulatory role in type I collagen with TGF-β1 in scleral fibroblasts from an experimentally induced myopia guinea pig model. J. Ophthalmol. 2016, <https://doi.org/10.1155/2016/5126560>
25. Li, W., Lan, W., Yang, S. et al. (2014) The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs. Invest. Ophthalmol. Vis. Sci. 55, 6324-6332. <https://doi.org/10.1167/iovs.13-13802>
26. Liu, A. L., Liu, Y. F., Wang, G. et al. (2022) The role of ipRGCs in ocular growth and myopia development. Sci. Adv. 8, eabm9027. <https://doi.org/10.1126/sciadv.abm9027>
27. Liu, H., Xiang, N., Zhang, H. (2007) Influence of high level TGF-β1 on scleral thickness. J. Huazhong Univ. Sci. Technolog. Med. Sci. 27, 601-604. <https://doi.org/10.1007/s11596-007-0532-0>
28. Liu, R., Qian, Y. F., He, J. C. et al. (2011) Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp. Eye Res. 92, 447-453. <https://doi.org/10.1016/j.exer.2011.03.003>
29. Liu, Y., Wang, Y., Lv, H. et al. (2017) α-adrenergic agonist brimonidine control of experimentally induced myopia in guinea pigs: a pilot study. Mol. Vis. 23, 785-798.
30. Liu, Y., Wang, Y. L., Wang, K. L. et al. (2015) Influence of artificial luminous environment and TCM intervention on development of myopia rabbits. Asian Pac. J. Trop. Med. 8, 243-248. <https://doi.org/10.1016/S1995-7645(14)60325-4>
31. Marcus, M. W., de Vries, M. M., Junoy Montolio, F. G. et al. (2011) Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology 118, 1989-1994.e2. <https://doi.org/10.1016/j.ophtha.2011.03.012>
32. Martin-Gallausiaux, C., Béguet-Crespel, F., Marinelli, L. et al. (2018) Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 8, 9742. <https://doi.org/10.1038/s41598-018-28048-y>
33. McBrien, N. A. (2013) Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp. Eye Res. 114, 128-140. <https://doi.org/10.1016/j.exer.2013.01.014>
34. McBrien, N. A., Gentle, A. (2001) The role of visual information in the control of scleral matrix biology in myopia. Curr. Eye Res. 23, 313-319. <https://doi.org/10.1076/ceyr.23.5.313.5440>
35. Meng, B., Li, S. M., Yang, Y. et al. (2015) The association of TGFB1 genetic polymorphisms with high myopia: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8, 20355-20367.
36. Morgan, I. G., Ashby, R. S. (2017) Bright light blocks the development of form deprivation myopia in mice, acting on D1 dopamine receptors. Invest. Ophthalmol. Vis. Sci. 58, 2317. <https://doi.org/10.1167/iovs.17-21871>
37. Morgan, I. G., French, A. N., Ashby, R. S. et al. (2018) The epidemics of myopia: aetiology and prevention. Prog. Retin. Eye Res. 62, 134-149. <https://doi.org/10.1016/j.preteyeres.2017.09.004>
38. Muralidharan, A. R., Low, S. W. Y., Lee, Y. C. et al. (2022) Recovery from form-deprivation myopia in chicks is dependent upon the fullness and correlated color temperature of the light spectrum. Invest. Ophthalmol. Vis. Sci. 63, 16. <https://doi.org/10.1167/iovs.63.2.16>
39. Naidoo, K. S., Fricke, T. R., Frick, K. D. et al. (2019) Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology 126, 338-346. <https://doi.org/10.1016/j.ophtha.2018.10.029>
40. Osborne, N. N., Núñez-Álvarez, C., Del Olmo-Aguado, S. et al. (2017) Visual light effects on mitochondria: the potential implications in relation to glaucoma. Mitochondrion 36, 29-35. <https://doi.org/10.1016/j.mito.2016.11.009>
41. Pan, M., Jiao, S., Reinach, P. S. et al. (2018) Opposing effects of PPARα agonism and antagonism on refractive development and form deprivation myopia in guinea pigs. Invest. Ophthalmol. Vis. Sci. 59, 5803-5815. <https://doi.org/10.1167/iovs.17-22297>
42. Prepas, S. B. (2008) Light, literacy and the absence of ultraviolet radiation in the development of myopia. Med. Hypotheses 70, 635-637. <https://doi.org/10.1016/j.mehy.2007.07.023>
43. Rada, J. A., Johnson, J. M., Achen, V. R. et al. (2002) Inhibition of scleral proteoglycan synthesis blocks deprivation-induced axial elongation in chicks. Exp. Eye Res. 74, 205-215. <https://doi.org/10.1006/exer.2001.1113>
44. Seidemann, A., Schaeffel, F. (2002) Effects of longitudinal chromatic aberration on accommodation and emmetropization. Vision Res. 42, 2409-2417. <https://doi.org/10.1016/S0042-6989(02)00262-6>
45. Sherwin, J. C., Reacher, M. H., Keogh, R. H. et al. (2012) The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119, 2141-2151. <https://doi.org/10.1016/j.ophtha.2012.04.020>
46. Tarzemany, R., Jiang, G., Larjava, H. et al. (2015) Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS One 10, e0115524. <https://doi.org/10.1371/journal.pone.0115524>
47. Torii, H., Kurihara, T., Seko, Y. et al. (2017) Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine 15, 210-219. <https://doi.org/10.1016/j.ebiom.2016.12.007>
48. Wang, F., Zhou, J., Lu, Y. et al. (2011) Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig. Curr. Eye Res. 36, 103-111. <https://doi.org/10.3109/02713683.2010.526750>
49. Wang, L., Du, M., Yi, H. et al. (2017) Prevalence of and factors associated with myopia in inner Mongolia medical students in China, a cross-sectional study. BMC Ophthalmol. 17, 52. <https://doi.org/10.1186/s12886-017-0446-y>
50. Wang, M., Corpuz, C. C. C., Zhang, F. (2021) Shaping eyeballs by scleral collagen cross-linking: a hypothesis for myopia treatment. Front. Med. (Lausanne) 8, 655822. <https://doi.org/10.3389/fmed.2021.655822>
51. Wang, R., Xu, B., Xu, H. (2018) TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle 17, 2756-2765. <https://doi.org/10.1080/15384101.2018.1556063>
52. Wen, G., Tarczy-Hornoch, K., McKean-Cowdin, R. et al. (2013) Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology 120, 2109-2116. <https://doi.org/10.1016/j.ophtha.2013.06.039>
53. Wildsoet, C., Wallman, J. (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res. 35, 1175-1194. <https://doi.org/10.1016/0042-6989(94)00233-C>
54. Wu, P. C., Chen, C. T., Lin, K. K. et al. (2018) Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 125, 1239-1250. <https://doi.org/10.1016/j.ophtha.2017.12.011>
55. Wu, P. C., Huang, H. M., Yu, H. J. et al. (2016) Epidemiology of myopia. Asia Pac. J. Ophthalmol. (Phila.) 5, 386-393. <https://doi.org/10.1097/APO.0000000000000236>
56. Xu, X., Shi, J., Zhang, C. et al. (2023) Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs. Eur. J. Histochem. 67, 3634. <https://doi.org/10.4081/ejh.2023.3634>
57. Yuan, Y., Li, M., Chen, Q. et al. (2018) Crosslinking enzyme lysyl oxidase modulates scleral remodeling in form-deprivation myopia. Curr. Eye Res. 43, 200-207. <https://doi.org/10.1080/02713683.2017.1390770>
58. Yuan, J., Li, L., Fan, Y. et al. (2024) Effects of artificial light with different spectral compositions on refractive development and matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2 expression in the sclerae of juvenile guinea pigs. Eur. J. Histochem. 68, 3982. <https://doi.org/10.4081/ejh.2024.3982>
59. Yu, J., Luo, H., Li, N. et al. (2015) Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway, part II: an in vivo investigation. Invest. Ophthalmol. Vis. Sci. 56, 6019-6028. <https://doi.org/10.1167/iovs.15-16558>
60. Zadnik, K., Mutti, D. O. (2019) Outdoor activity protects against childhood myopia – let the sun shine in. JAMA Pediatr. 173, 415-416. <https://doi.org/10.1001/jamapediatrics.2019.0278>
61. Zhan, X., Zhu, Z. C., Sun, S. Q. et al. (2019) Dynamic changes of activator protein 1 and collagen I expression in the sclera of myopia guinea pigs. Int. J. Ophthalmol. 12, 1272-1276. <https://doi.org/10.18240/ijo.2019.08.06>
62. Zhang, C. W., Xu, J. H., Wang, Y. L. et al. (2014) Survey and analysis of visual acuity of Kazakhs in different lighting environments. Genet. Mol. Res. 13, 2451-2457. <https://doi.org/10.4238/2014.April.3.17>
63. Zhu, X., Winawer, J. A., Wallman, J. (2003) Potency of myopic defocus in spectacle lens compensation. Invest. Ophthalmol. Vis. Sci. 44, 2818-2827. <https://doi.org/10.1167/iovs.02-0606>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive