Fol. Biol. 2024, 70, 219-228
https://doi.org/10.14712/fb2024070040219
Effects of Different Light Environments with Varying Spectral Composition on the Axial Lengths and Scleral Specificity Protein 1 and Collagen Type I Expression in Juvenile Guinea Pigs
References
1. 2015) Sp1 and the ‘hallmarks of cancer.’ FEBS J. 282, 224-258.
< , K., Azizkhan-Clifford, J. (https://doi.org/10.1111/febs.13148>
2. 2013) Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob. Health 1, e339-e349.
< , R. R., Stevens, G. A., White, R. A. et al. (https://doi.org/10.1016/S2214-109X(13)70113-X>
3. Chakraborty, R., Landis, E. G., Mazade, R. et al. (2022) Melanopsin modulates refractive development and myopia. Exp. Eye Res. 214.
<https://doi.org/10.1016/j.exer.2021.108866>
4. 2017) How to effectively manage myopia. Taiwan J. Ophthalmol. 7, 44-47.
< , A. Y. (https://doi.org/10.4103/tjo.tjo_24_17>
5. 2019) Myopia: a growing epidemic. Community Eye Health 32, 9.
, J., Fricke, T., Morjaria, P. et al. (
6. 2013) Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Invest. Ophthalmol. Vis. Sci. 54, 8004-8012.
< , W. S., Barathi, V. A., Luu, C. D. (https://doi.org/10.1167/iovs.13-12476>
7. 2020) Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 217, e20190103.
< , N. (https://doi.org/10.1084/jem.20190103>
8. 2017) A bioengineering approach to myopia control tested in a guinea pig model. Invest. Ophthalmol. Vis. Sci. 58, 1875-1886.
< , M. B., Jha, A. K., Healy, K. E. et al. (https://doi.org/10.1167/iovs.16-20694>
9. 2017) The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp. Eye Res. 155, 75-84.
< , T. J., Siegwart, J. T. Jr., Ward, A. H. et al. (https://doi.org/10.1016/j.exer.2016.12.004>
10. 2003) Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia. J. Biol. Chem. 278, 16587-16594.
< , A., Liu, Y., Martin, J. E. et al. (https://doi.org/10.1074/jbc.M300970200>
11. 2013) Differential expression of melanopsin mRNA and protein in brown Norwegian rats. Exp. Eye Res. 106, 55-63.
< , J., Georg, B., Fahrenkrug, J. (https://doi.org/10.1016/j.exer.2012.11.006>
12. 2017) Blue sclera secondary to severe iron deficiency anemia. QJM 110, 835-836.
< , G. W., Chirurgi, R., Kalantari, H. (https://doi.org/10.1093/qjmed/hcx163>
13. 2015) Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314, 1142-1148.
< , M., Xiang, F., Zeng, Y. et al. (https://doi.org/10.1001/jama.2015.10803>
14. 2016) Transcription factors in the cellular response to charged particle exposure. Front. Oncol. 6, 61.
< , C. E., Spitta, L. F., Henschenmacher, B. et al. (https://doi.org/10.3389/fonc.2016.00061>
15. 2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123, 1036-1042.
< , B. A., Fricke, T. R., Wilson, D. A. et al. (https://doi.org/10.1016/j.ophtha.2016.01.006>
16. 2018) Axial length/corneal radius of curvature ratio assessment of posterior sclera reinforcement for pathologic myopia. Ophthalmologica 239, 128-132.
< , H., Zhao, G., Wu, R. et al. (https://doi.org/10.1159/000484485>
17. 2022) Low color temperature artificial lighting can slow myopia development: long-term study using juvenile monkeys. Zool. Res. 43, 229-233.
< , Y. Z., Yang, H., Li, H. et al. (https://doi.org/10.24272/j.issn.2095-8137.2021.401>
18. 2017) Overview of the complications of high myopia. Retina 37, 2347-2351.
< , Y. (https://doi.org/10.1097/IAE.0000000000001489>
19. 2017) Expression and role of specificity protein 1 in the sclera remodeling of experimental myopia in guinea pigs. Int. J. Ophthalmol. 10, 550-554.
, B., Wu, Z. Y., Zhu, Z. C. et al. (
20. 2014) Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res. 94, 24-32.
< , L., Zhang, S., Schaeffel, F. et al. (https://doi.org/10.1016/j.visres.2013.10.020>
21. 2004) Isoform-specific changes in scleral transforming growth factor-β expression and the regulation of collagen synthesis during myopia progression. J. Biol. Chem. 279, 18121-18126.
< , A. I., Nguyen, M., Gentle, A. et al. (https://doi.org/10.1074/jbc.M400381200>
22. 1994) Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Res. 34, 1807-1814.
< , R. H., Fernald, R. D. (https://doi.org/10.1016/0042-6989(94)90305-0>
23. 2016a) MicroRNA-29b inhibits endometrial fibrosis by regulating the Sp1-TGF-β1/Smad-CTGF axis in a rat model. Reprod. Sci. 23, 386-394.
< , J., Du, S., Sheng, X. et al. (https://doi.org/10.1177/1933719115602768>
24. Li, M., Yuan, Y., Chen, Q. et al. (2016b) Expression of Wnt/β-catenin signaling pathway and its regulatory role in type I collagen with TGF-β1 in scleral fibroblasts from an experimentally induced myopia guinea pig model. J. Ophthalmol. 2016,
<https://doi.org/10.1155/2016/5126560>
25. 2014) The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs. Invest. Ophthalmol. Vis. Sci. 55, 6324-6332.
< , W., Lan, W., Yang, S. et al. (https://doi.org/10.1167/iovs.13-13802>
26. 2022) The role of ipRGCs in ocular growth and myopia development. Sci. Adv. 8, eabm9027.
< , A. L., Liu, Y. F., Wang, G. et al. (https://doi.org/10.1126/sciadv.abm9027>
27. 2007) Influence of high level TGF-β1 on scleral thickness. J. Huazhong Univ. Sci. Technolog. Med. Sci. 27, 601-604.
< , H., Xiang, N., Zhang, H. (https://doi.org/10.1007/s11596-007-0532-0>
28. 2011) Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp. Eye Res. 92, 447-453.
< , R., Qian, Y. F., He, J. C. et al. (https://doi.org/10.1016/j.exer.2011.03.003>
29. 2017) α-adrenergic agonist brimonidine control of experimentally induced myopia in guinea pigs: a pilot study. Mol. Vis. 23, 785-798.
, Y., Wang, Y., Lv, H. et al. (
30. 2015) Influence of artificial luminous environment and TCM intervention on development of myopia rabbits. Asian Pac. J. Trop. Med. 8, 243-248.
< , Y., Wang, Y. L., Wang, K. L. et al. (https://doi.org/10.1016/S1995-7645(14)60325-4>
31. 2011) Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology 118, 1989-1994.e2.
< , M. W., de Vries, M. M., Junoy Montolio, F. G. et al. (https://doi.org/10.1016/j.ophtha.2011.03.012>
32. 2018) Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci. Rep. 8, 9742.
< , C., Béguet-Crespel, F., Marinelli, L. et al. (https://doi.org/10.1038/s41598-018-28048-y>
33. 2013) Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp. Eye Res. 114, 128-140.
< , N. A. (https://doi.org/10.1016/j.exer.2013.01.014>
34. 2001) The role of visual information in the control of scleral matrix biology in myopia. Curr. Eye Res. 23, 313-319.
< , N. A., Gentle, A. (https://doi.org/10.1076/ceyr.23.5.313.5440>
35. 2015) The association of TGFB1 genetic polymorphisms with high myopia: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8, 20355-20367.
, B., Li, S. M., Yang, Y. et al. (
36. 2017) Bright light blocks the development of form deprivation myopia in mice, acting on D1 dopamine receptors. Invest. Ophthalmol. Vis. Sci. 58, 2317.
< , I. G., Ashby, R. S. (https://doi.org/10.1167/iovs.17-21871>
37. 2018) The epidemics of myopia: aetiology and prevention. Prog. Retin. Eye Res. 62, 134-149.
< , I. G., French, A. N., Ashby, R. S. et al. (https://doi.org/10.1016/j.preteyeres.2017.09.004>
38. 2022) Recovery from form-deprivation myopia in chicks is dependent upon the fullness and correlated color temperature of the light spectrum. Invest. Ophthalmol. Vis. Sci. 63, 16.
< , A. R., Low, S. W. Y., Lee, Y. C. et al. (https://doi.org/10.1167/iovs.63.2.16>
39. 2019) Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology 126, 338-346.
< , K. S., Fricke, T. R., Frick, K. D. et al. (https://doi.org/10.1016/j.ophtha.2018.10.029>
40. 2017) Visual light effects on mitochondria: the potential implications in relation to glaucoma. Mitochondrion 36, 29-35.
< , N. N., Núñez-Álvarez, C., Del Olmo-Aguado, S. et al. (https://doi.org/10.1016/j.mito.2016.11.009>
41. 2018) Opposing effects of PPARα agonism and antagonism on refractive development and form deprivation myopia in guinea pigs. Invest. Ophthalmol. Vis. Sci. 59, 5803-5815.
< , M., Jiao, S., Reinach, P. S. et al. (https://doi.org/10.1167/iovs.17-22297>
42. 2008) Light, literacy and the absence of ultraviolet radiation in the development of myopia. Med. Hypotheses 70, 635-637.
< , S. B. (https://doi.org/10.1016/j.mehy.2007.07.023>
43. 2002) Inhibition of scleral proteoglycan synthesis blocks deprivation-induced axial elongation in chicks. Exp. Eye Res. 74, 205-215.
< , J. A., Johnson, J. M., Achen, V. R. et al. (https://doi.org/10.1006/exer.2001.1113>
44. 2002) Effects of longitudinal chromatic aberration on accommodation and emmetropization. Vision Res. 42, 2409-2417.
< , A., Schaeffel, F. (https://doi.org/10.1016/S0042-6989(02)00262-6>
45. 2012) The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119, 2141-2151.
< , J. C., Reacher, M. H., Keogh, R. H. et al. (https://doi.org/10.1016/j.ophtha.2012.04.020>
46. 2015) Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS One 10, e0115524.
< , R., Jiang, G., Larjava, H. et al. (https://doi.org/10.1371/journal.pone.0115524>
47. 2017) Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine 15, 210-219.
< , H., Kurihara, T., Seko, Y. et al. (https://doi.org/10.1016/j.ebiom.2016.12.007>
48. 2011) Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig. Curr. Eye Res. 36, 103-111.
< , F., Zhou, J., Lu, Y. et al. (https://doi.org/10.3109/02713683.2010.526750>
49. 2017) Prevalence of and factors associated with myopia in inner Mongolia medical students in China, a cross-sectional study. BMC Ophthalmol. 17, 52.
< , L., Du, M., Yi, H. et al. (https://doi.org/10.1186/s12886-017-0446-y>
50. 2021) Shaping eyeballs by scleral collagen cross-linking: a hypothesis for myopia treatment. Front. Med. (Lausanne) 8, 655822.
< , M., Corpuz, C. C. C., Zhang, F. (https://doi.org/10.3389/fmed.2021.655822>
51. 2018) TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle 17, 2756-2765.
< , R., Xu, B., Xu, H. (https://doi.org/10.1080/15384101.2018.1556063>
52. 2013) Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology 120, 2109-2116.
< , G., Tarczy-Hornoch, K., McKean-Cowdin, R. et al. (https://doi.org/10.1016/j.ophtha.2013.06.039>
53. 1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res. 35, 1175-1194.
< , C., Wallman, J. (https://doi.org/10.1016/0042-6989(94)00233-C>
54. 2018) Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 125, 1239-1250.
< , P. C., Chen, C. T., Lin, K. K. et al. (https://doi.org/10.1016/j.ophtha.2017.12.011>
55. 2016) Epidemiology of myopia. Asia Pac. J. Ophthalmol. (Phila.) 5, 386-393.
< , P. C., Huang, H. M., Yu, H. J. et al. (https://doi.org/10.1097/APO.0000000000000236>
56. 2023) Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs. Eur. J. Histochem. 67, 3634.
< , X., Shi, J., Zhang, C. et al. (https://doi.org/10.4081/ejh.2023.3634>
57. 2018) Crosslinking enzyme lysyl oxidase modulates scleral remodeling in form-deprivation myopia. Curr. Eye Res. 43, 200-207.
< , Y., Li, M., Chen, Q. et al. (https://doi.org/10.1080/02713683.2017.1390770>
58. 2024) Effects of artificial light with different spectral compositions on refractive development and matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2 expression in the sclerae of juvenile guinea pigs. Eur. J. Histochem. 68, 3982.
< , J., Li, L., Fan, Y. et al. (https://doi.org/10.4081/ejh.2024.3982>
59. 2015) Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway, part II: an in vivo investigation. Invest. Ophthalmol. Vis. Sci. 56, 6019-6028.
< , J., Luo, H., Li, N. et al. (https://doi.org/10.1167/iovs.15-16558>
60. 2019) Outdoor activity protects against childhood myopia – let the sun shine in. JAMA Pediatr. 173, 415-416.
< , K., Mutti, D. O. (https://doi.org/10.1001/jamapediatrics.2019.0278>
61. 2019) Dynamic changes of activator protein 1 and collagen I expression in the sclera of myopia guinea pigs. Int. J. Ophthalmol. 12, 1272-1276.
< , X., Zhu, Z. C., Sun, S. Q. et al. (https://doi.org/10.18240/ijo.2019.08.06>
62. 2014) Survey and analysis of visual acuity of Kazakhs in different lighting environments. Genet. Mol. Res. 13, 2451-2457.
< , C. W., Xu, J. H., Wang, Y. L. et al. (https://doi.org/10.4238/2014.April.3.17>
63. 2003) Potency of myopic defocus in spectacle lens compensation. Invest. Ophthalmol. Vis. Sci. 44, 2818-2827.
< , X., Winawer, J. A., Wallman, J. (https://doi.org/10.1167/iovs.02-0606>