Fol. Biol. 2024, 70, 229-238
Down-regulation of JCAD Expression Attenuates Cardiomyocyte Injury by Regulating the Wnt/β-Catenin Pathway
Coronary heart disease (CHD) is one of the most commonly seen cardiovascular conditions across the globe. Junctional cadherin 5 associated (JCAD) protein is found in the intercellular junctions of endothelial cells and linked to cardiovascular diseases. Nonetheless, the influence of JCAD on cardiomyocyte injury caused by CHD is unclear. A model of H2O2-induced H9c2 cell injury was constructed, and JCAD mRNA and protein levels were assessed by qRT-PCR and Western blot. The impacts of JCAD on the proliferation or apoptosis of H9c2 cells were explored by CCK-8 assay, Western blot and TUNEL staining. The effect of JCAD on the inflammatory response and vascular endothelial function of H9c2 cells was detected using ELISA kits. The levels of Wnt/β-catenin pathway-related proteins were assessed by Western blot. H2O2 treatment led to a rise in the levels of JCAD in H9c2 cells. Over-expression of JCAD promoted H2O2-induced cellular injury, leading to notably elevated contents of inflammatory factors, along with vascular endothelial dysfunction. In contrast to over-expression of JCAD, silencing of JCAD attenuated H2O2-induced cellular injury and inhibited apoptosis, inflammatory response and vascular endothelial dysfunction. Notably, JCAD could regulate the Wnt/β-catenin pathway, while DKK-1, Wnt/β-catenin pathway antagonist, counteracted the enhancing impact of JCAD over-expression on H2O2-induced H9c2 cell injury, further confirming that JCAD acts by regulating the Wnt/β-catenin pathway. In summary, over-expression of JCAD promoted H2O2-induced H9c2 cell injury by activating the Wnt/β-catenin pathway, while silencing of JCAD attenuated the H2O2-induced cell injury.
Keywords
JCAD, coronary heart disease, Wnt/β-catenin signalling pathway, inflammation, vascular endothelial function.
References
Copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution License.