Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 229-238

https://doi.org/10.14712/fb2024070040229

Down-regulation of JCAD Expression Attenuates Cardiomyocyte Injury by Regulating the Wnt/β-Catenin Pathway

Can Li1, Zhengdong Liu1, Dong Liu1, Hui Jiang1, Chenglong Bi2, Weiwei Shi1

1Dafeng People’s Hospital of Yancheng City, Jiangsu Province, China
2People’s Hospital of Zibo City, Shandong Province, China

Received May 2024
Accepted October 2024

References

1. Alpert, J. S. (2023) New coronary heart disease risk factors. Am. J. Med. 136, 331-332. <https://doi.org/10.1016/j.amjmed.2022.08.002>
2. Bae, J. W., Woo, S. I., Lee, J. et al. (2021) mHealth interventions for lifestyle and risk factor modification in coronary heart disease: randomized controlled trial. JMIR Mhealth Uhealth 9, e29928. <https://doi.org/10.2196/29928>
3. Chen, Y., Guo, X., Zeng, Y. et al. (2023) Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci. Rep. 13, 15515. <https://doi.org/10.1038/s41598-023-42760-4>
4. Desita, S. R., Hariftyani, A. S., Jannah, A. R. et al. (2022) PCSK9 and LRP6: potential combination targets to prevent and reduce atherosclerosis. J. Basic Clin. Physiol. Pharmacol. 33, 529-534. <https://doi.org/10.1515/jbcpp-2021-0291>
5. Dong, Y., Chen, H., Gao, J. et al. (2019) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell. Cardiol. 136, 27-41. <https://doi.org/10.1016/j.yjmcc.2019.09.001>
6. Dugani, S. B., Moorthy, M. V., Li, C. et al. (2021) Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women. JAMA Cardiol. 6, 437-447. <https://doi.org/10.1001/jamacardio.2020.7073>
7. Duggan, J. P., Peters, A. S., Trachiotis, G. D. et al. (2022) Epidemiology of coronary artery disease. Surg. Clin. North Am. 102, 499-516. <https://doi.org/10.1016/j.suc.2022.01.007>
8. Ford, T. J., Corcoran, D., Padmanabhan, S. et al. (2020) Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur. Heart J. 41, 3239-3252. <https://doi.org/10.1093/eurheartj/ehz915>
9. Gupta, R. M., Libby, P., Barton, M. (2020) Linking regulation of nitric oxide to endothelin-1: the yin and yang of vascular tone in the atherosclerotic plaque. Atherosclerosis 292, 201-203. <https://doi.org/10.1016/j.atherosclerosis.2019.11.001>
10. Guzik, T. J., Channon, K. M. (2023) JCAD: a new GWAS target to reduce residual cardiovascular risk? Eur. Heart J. 44, 1834-1836. <https://doi.org/10.1093/eurheartj/ehac708>
11. Jones, P. D., Kaiser, M. A., Ghaderi Najafabadi, M. et al. (2018) JCAD, a gene at the 10p11 coronary artery disease locus, regulates hippo signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 38, 1711-1722. <https://doi.org/10.1161/ATVBAHA.118.310976>
12. Katta, N., Loethen, T., Lavie, C. J. et al. (2021) Obesity and coronary heart disease: epidemiology, pathology, and coronary artery imaging. Curr. Probl. Cardiol. 46, 100655. <https://doi.org/10.1016/j.cpcardiol.2020.100655>
13. Law, S. M., Zheng, J. J. (2022) Premise and peril of Wnt signaling activation through GSK-3β inhibition. iScience 25, 104159. <https://doi.org/10.1016/j.isci.2022.104159>
14. Li, Y., Zhang, W. (2022) Effect of ginsenoside Rb2 on a myocardial cell model of coronary heart disease through Nrf2/HO-1 signaling pathway. Biol. Pharm. Bull. 45, 71-76. <https://doi.org/10.1248/bpb.b21-00525>
15. Liberale, L., Puspitasari, Y. M., Ministrini, S. et al. (2023) JCAD promotes arterial thrombosis through PI3K/Akt modulation: a translational study. Eur. Heart J. 44, 1818-1833. <https://doi.org/10.1093/eurheartj/ehac641>
16. Liu, M., Zhang, Y., Cao, X. et al. (2022) miR-197 participates in lipopolysaccharide-induced cardiomyocyte injury by modulating SIRT1. Cardiol. Res. Pract. 2022, 7687154.
17. Liu, S., Li, Y., Wu, C. (2023) Paeoniflorin suppresses the apoptosis and inflammation of human coronary artery endothelial cells induced by oxidized low-density lipoprotein by regulating the Wnt/β-catenin pathway. Pharm. Biol. 61, 1454-1461. <https://doi.org/10.1080/13880209.2023.2220360>
18. Liu, Y., Neogi, A., Mani, A. (2020) The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol. 10, 200128. <https://doi.org/10.1098/rsob.200128>
19. Lu, D. Y., Sun, J., Zheng, J. et al. (2021) Shenxiong glucose injection inhibits H2O2-induced H9c2 cell apoptosis by activating the ERK signaling pathway. Biomed. Pharmacother. 143, 112114. <https://doi.org/10.1016/j.biopha.2021.112114>
20. Medina-Leyte, D. J., Zepeda-García, O., Domínguez-Pérez, M. et al. (2021) Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 22, 3850. <https://doi.org/10.3390/ijms22083850>
21. Montarello, N. J., Nguyen, M. T., Wong, D. T. L. et al. (2022) Inflammation in coronary atherosclerosis and its therapeutic implications. Cardiovasc. Drugs Ther. 36, 347-362. <https://doi.org/10.1007/s10557-020-07106-6>
22. Nikpay, M., Goel, A., Won, H. H. et al. (2015) A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121-1130.
23. Radhika, A., Burgula, S., Badapanda, C. et al. (2023) Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease. Mamm. Genome 34, 632-643. <https://doi.org/10.1007/s00335-023-10017-0>
24. Sagris, M., Theofilis, P., Antonopoulos, A. S. et al. (2021) Inflammation in coronary microvascular dysfunction. Int. J. Mol. Sci. 22, 13471. <https://doi.org/10.3390/ijms222413471>
25. Shao, C., Wang, J., Tian, J. et al. (2020) Coronary artery disease: from mechanism to clinical practice. Adv. Exp. Med. Biol. 1177, 1-36. <https://doi.org/10.1007/978-981-15-2517-9_1>
26. Shaya, G. E., Leucker, T. M., Jones, S. R. et al. (2022) Coronary heart disease risk: low-density lipoprotein and beyond. Trends Cardiovasc. Med. 32, 181-194. <https://doi.org/10.1016/j.tcm.2021.04.002>
27. Shigeoka, M., Arimoto, S., Akashi, M. (2020) JCAD expression and localization in human blood endothelial cells. Heliyon 6, e05121. <https://doi.org/10.1016/j.heliyon.2020.e05121>
28. Sun, Y. H., Bu, R., Wang, Y. W. et al. (2021) Validation of efficacy and mechanism of Sanwei-Tanxiang powder in improving myocardial ischemia reperfusion injuries. Sci. Rep. 11, 664. <https://doi.org/10.1038/s41598-020-80861-6>
29. Tao, S., Tang, X., Yu, L. et al. (2023) Prognosis of coronary heart disease after percutaneous coronary intervention: a bibliometric analysis over the period 2004-2022. Eur. J. Med. Res. 28, 311. <https://doi.org/10.1186/s40001-023-01220-5>
30. Tong, H. Y., Dong, Y., Huang, X. J. et al. (2022) Anshen buxin liuwei pill, a Mongolian medicinal formula, could protect H2O2-induced H9c2 myocardial cell injury by suppressing apoptosis, calcium channel activation, and oxidative stress. Evid. Based Complement. Alternat. Med. 2022, <https://doi.org/10.1155/2022/5023654>
31. Tsioufis, P., Theofilis, P., Tsioufis, K. et al. (2022) The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches. Int. J. Mol. Sci. 23, 15937. <https://doi.org/10.3390/ijms232415937>
32. Wang, Y., Wang, Y., Liu, T. et al. (2023) Association between endothelin-1, nitric oxide, and Gensini score in chronic coronary syndrome. BMC Cardiovasc. Disord. 23, 602. <https://doi.org/10.1186/s12872-023-03625-w>
33. Weerackoon, N., Gunawardhana, K. L., Mani, A. (2021) Wnt signaling cascades and their role in coronary artery health and disease. J. Cell. Signal. 2, 52-62.
34. Williams, E. G., Stein, S. (2019) JCAD: from systems genetics identification to the experimental validation of a coronary artery disease risk locus. Eur. Heart J. 40, 2409-2412. <https://doi.org/10.1093/eurheartj/ehz370>
35. Xia, Y., Brewer, A., Bell, J. T. (2021) DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin. Epigenetics 13, 186. <https://doi.org/10.1186/s13148-021-01175-6>
36. Xu, S., Xu, Y., Liu, P. et al. (2019) The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur. Heart J. 40, 2398-2408. <https://doi.org/10.1093/eurheartj/ehz303>
37. Yang, Y. L., Wu, C. H., Hsu, P. F. et al. (2020) Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur. J. Clin. Invest. 50, e13230. <https://doi.org/10.1111/eci.13230>
38. Yao, J. Q., Deng, Z. J., Fang, M. X. et al. (2023) Expression of serum inflammatory cytokines and oxidative stress markers and their correlation with coronary artery calcium score in patients with coronary heart disease. Arch. Med. Sci. 19, 1709-1713.
39. Yazdani, A. N., Pletsch, M., Chorbajian, A. et al. (2023) Biomarkers to monitor the prognosis, disease severity, and treatment efficacy in coronary artery disease. Expert Rev. Cardiovasc. Ther. 21, 675-692. <https://doi.org/10.1080/14779072.2023.2264779>
40. Zhao, J., Zhang, J., Liu, Q. et al. (2021) Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic-flux. Biomed. Pharmacother. 135, <https://doi.org/10.1016/j.biopha.2020.111205>
41. Zhou, X., Zhou, S., Li, Y. et al. (2022) Clinical significance of HSCARG for atherosclerotic coronary heart disease and reduced ROS-oxidative stress in in vivo and in vitro models via p47phox by NF-κB activity. Braz. J. Cardiovasc. Surg. 37, 727-736. <https://doi.org/10.21470/1678-9741-2021-0183>
42. Zou, J. F., Wu, X. N., Shi, R. H. et al. (2020) Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28. Eur. Rev. Med. Pharmacol. Sci. 24, 11251-11258.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive