Fol. Biol. 2024, 70, 229-238
https://doi.org/10.14712/fb2024070040229
Down-regulation of JCAD Expression Attenuates Cardiomyocyte Injury by Regulating the Wnt/β-Catenin Pathway
References
1. 2023) New coronary heart disease risk factors. Am. J. Med. 136, 331-332.
< , J. S. (https://doi.org/10.1016/j.amjmed.2022.08.002>
2. 2021) mHealth interventions for lifestyle and risk factor modification in coronary heart disease: randomized controlled trial. JMIR Mhealth Uhealth 9, e29928.
< , J. W., Woo, S. I., Lee, J. et al. (https://doi.org/10.2196/29928>
3. 2023) Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci. Rep. 13, 15515.
< , Y., Guo, X., Zeng, Y. et al. (https://doi.org/10.1038/s41598-023-42760-4>
4. 2022) PCSK9 and LRP6: potential combination targets to prevent and reduce atherosclerosis. J. Basic Clin. Physiol. Pharmacol. 33, 529-534.
< , S. R., Hariftyani, A. S., Jannah, A. R. et al. (https://doi.org/10.1515/jbcpp-2021-0291>
5. 2019) Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell. Cardiol. 136, 27-41.
< , Y., Chen, H., Gao, J. et al. (https://doi.org/10.1016/j.yjmcc.2019.09.001>
6. 2021) Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women. JAMA Cardiol. 6, 437-447.
< , S. B., Moorthy, M. V., Li, C. et al. (https://doi.org/10.1001/jamacardio.2020.7073>
7. 2022) Epidemiology of coronary artery disease. Surg. Clin. North Am. 102, 499-516.
< , J. P., Peters, A. S., Trachiotis, G. D. et al. (https://doi.org/10.1016/j.suc.2022.01.007>
8. 2020) Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur. Heart J. 41, 3239-3252.
< , T. J., Corcoran, D., Padmanabhan, S. et al. (https://doi.org/10.1093/eurheartj/ehz915>
9. 2020) Linking regulation of nitric oxide to endothelin-1: the yin and yang of vascular tone in the atherosclerotic plaque. Atherosclerosis 292, 201-203.
< , R. M., Libby, P., Barton, M. (https://doi.org/10.1016/j.atherosclerosis.2019.11.001>
10. 2023) JCAD: a new GWAS target to reduce residual cardiovascular risk? Eur. Heart J. 44, 1834-1836.
< , T. J., Channon, K. M. (https://doi.org/10.1093/eurheartj/ehac708>
11. 2018) JCAD, a gene at the 10p11 coronary artery disease locus, regulates hippo signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 38, 1711-1722.
< , P. D., Kaiser, M. A., Ghaderi Najafabadi, M. et al. (https://doi.org/10.1161/ATVBAHA.118.310976>
12. 2021) Obesity and coronary heart disease: epidemiology, pathology, and coronary artery imaging. Curr. Probl. Cardiol. 46, 100655.
< , N., Loethen, T., Lavie, C. J. et al. (https://doi.org/10.1016/j.cpcardiol.2020.100655>
13. 2022) Premise and peril of Wnt signaling activation through GSK-3β inhibition. iScience 25, 104159.
< , S. M., Zheng, J. J. (https://doi.org/10.1016/j.isci.2022.104159>
14. 2022) Effect of ginsenoside Rb2 on a myocardial cell model of coronary heart disease through Nrf2/HO-1 signaling pathway. Biol. Pharm. Bull. 45, 71-76.
< , Y., Zhang, W. (https://doi.org/10.1248/bpb.b21-00525>
15. 2023) JCAD promotes arterial thrombosis through PI3K/Akt modulation: a translational study. Eur. Heart J. 44, 1818-1833.
< , L., Puspitasari, Y. M., Ministrini, S. et al. (https://doi.org/10.1093/eurheartj/ehac641>
16. 2022) miR-197 participates in lipopolysaccharide-induced cardiomyocyte injury by modulating SIRT1. Cardiol. Res. Pract. 2022, 7687154.
, M., Zhang, Y., Cao, X. et al. (
17. 2023) Paeoniflorin suppresses the apoptosis and inflammation of human coronary artery endothelial cells induced by oxidized low-density lipoprotein by regulating the Wnt/β-catenin pathway. Pharm. Biol. 61, 1454-1461.
< , S., Li, Y., Wu, C. (https://doi.org/10.1080/13880209.2023.2220360>
18. 2020) The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol. 10, 200128.
< , Y., Neogi, A., Mani, A. (https://doi.org/10.1098/rsob.200128>
19. 2021) Shenxiong glucose injection inhibits H2O2-induced H9c2 cell apoptosis by activating the ERK signaling pathway. Biomed. Pharmacother. 143, 112114.
< , D. Y., Sun, J., Zheng, J. et al. (https://doi.org/10.1016/j.biopha.2021.112114>
20. 2021) Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 22, 3850.
< , D. J., Zepeda-García, O., Domínguez-Pérez, M. et al. (https://doi.org/10.3390/ijms22083850>
21. 2022) Inflammation in coronary atherosclerosis and its therapeutic implications. Cardiovasc. Drugs Ther. 36, 347-362.
< , N. J., Nguyen, M. T., Wong, D. T. L. et al. (https://doi.org/10.1007/s10557-020-07106-6>
22. 2015) A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121-1130.
, M., Goel, A., Won, H. H. et al. (
23. 2023) Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease. Mamm. Genome 34, 632-643.
< , A., Burgula, S., Badapanda, C. et al. (https://doi.org/10.1007/s00335-023-10017-0>
24. 2021) Inflammation in coronary microvascular dysfunction. Int. J. Mol. Sci. 22, 13471.
< , M., Theofilis, P., Antonopoulos, A. S. et al. (https://doi.org/10.3390/ijms222413471>
25. 2020) Coronary artery disease: from mechanism to clinical practice. Adv. Exp. Med. Biol. 1177, 1-36.
< , C., Wang, J., Tian, J. et al. (https://doi.org/10.1007/978-981-15-2517-9_1>
26. 2022) Coronary heart disease risk: low-density lipoprotein and beyond. Trends Cardiovasc. Med. 32, 181-194.
< , G. E., Leucker, T. M., Jones, S. R. et al. (https://doi.org/10.1016/j.tcm.2021.04.002>
27. 2020) JCAD expression and localization in human blood endothelial cells. Heliyon 6, e05121.
< , M., Arimoto, S., Akashi, M. (https://doi.org/10.1016/j.heliyon.2020.e05121>
28. 2021) Validation of efficacy and mechanism of Sanwei-Tanxiang powder in improving myocardial ischemia reperfusion injuries. Sci. Rep. 11, 664.
< , Y. H., Bu, R., Wang, Y. W. et al. (https://doi.org/10.1038/s41598-020-80861-6>
29. 2023) Prognosis of coronary heart disease after percutaneous coronary intervention: a bibliometric analysis over the period 2004-2022. Eur. J. Med. Res. 28, 311.
< , S., Tang, X., Yu, L. et al. (https://doi.org/10.1186/s40001-023-01220-5>
30. Tong, H. Y., Dong, Y., Huang, X. J. et al. (2022) Anshen buxin liuwei pill, a Mongolian medicinal formula, could protect H2O2-induced H9c2 myocardial cell injury by suppressing apoptosis, calcium channel activation, and oxidative stress. Evid. Based Complement. Alternat. Med. 2022,
<https://doi.org/10.1155/2022/5023654>
31. 2022) The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches. Int. J. Mol. Sci. 23, 15937.
< , P., Theofilis, P., Tsioufis, K. et al. (https://doi.org/10.3390/ijms232415937>
32. 2023) Association between endothelin-1, nitric oxide, and Gensini score in chronic coronary syndrome. BMC Cardiovasc. Disord. 23, 602.
< , Y., Wang, Y., Liu, T. et al. (https://doi.org/10.1186/s12872-023-03625-w>
33. 2021) Wnt signaling cascades and their role in coronary artery health and disease. J. Cell. Signal. 2, 52-62.
, N., Gunawardhana, K. L., Mani, A. (
34. 2019) JCAD: from systems genetics identification to the experimental validation of a coronary artery disease risk locus. Eur. Heart J. 40, 2409-2412.
< , E. G., Stein, S. (https://doi.org/10.1093/eurheartj/ehz370>
35. 2021) DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin. Epigenetics 13, 186.
< , Y., Brewer, A., Bell, J. T. (https://doi.org/10.1186/s13148-021-01175-6>
36. 2019) The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur. Heart J. 40, 2398-2408.
< , S., Xu, Y., Liu, P. et al. (https://doi.org/10.1093/eurheartj/ehz303>
37. 2020) Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur. J. Clin. Invest. 50, e13230.
< , Y. L., Wu, C. H., Hsu, P. F. et al. (https://doi.org/10.1111/eci.13230>
38. 2023) Expression of serum inflammatory cytokines and oxidative stress markers and their correlation with coronary artery calcium score in patients with coronary heart disease. Arch. Med. Sci. 19, 1709-1713.
, J. Q., Deng, Z. J., Fang, M. X. et al. (
39. 2023) Biomarkers to monitor the prognosis, disease severity, and treatment efficacy in coronary artery disease. Expert Rev. Cardiovasc. Ther. 21, 675-692.
< , A. N., Pletsch, M., Chorbajian, A. et al. (https://doi.org/10.1080/14779072.2023.2264779>
40. Zhao, J., Zhang, J., Liu, Q. et al. (2021) Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic-flux. Biomed. Pharmacother. 135,
<https://doi.org/10.1016/j.biopha.2020.111205>
41. 2022) Clinical significance of HSCARG for atherosclerotic coronary heart disease and reduced ROS-oxidative stress in in vivo and in vitro models via p47phox by NF-κB activity. Braz. J. Cardiovasc. Surg. 37, 727-736.
< , X., Zhou, S., Li, Y. et al. (https://doi.org/10.21470/1678-9741-2021-0183>
42. 2020) Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28. Eur. Rev. Med. Pharmacol. Sci. 24, 11251-11258.
, J. F., Wu, X. N., Shi, R. H. et al. (