Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 248-261

https://doi.org/10.14712/fb2024070050248

Serum Biomarkers in Diagnosis and Clinical Management of Inflammatory Bowel Disease: Anything New on the Horizon?

Juraj Ondriš1,2, Rastislav Husťak2,3, Juraj Ďurina4, Eva Malicherová Jurková5, Vladimír Bošák2

1AstraZeneca AB o.z., Bratislava, Slovakia
2Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University, Trnava, Slovakia
3Gastroenterology Department, Clinic of Internal Medicine, University Hospital in Trnava, Slovakia
4Gastroenterology and Hepatology Centre, University Hospital with Polyclinic in Nové Zámky, Slovakia
5Centre for Periodic Fever Syndromes, Department of Paediatrics, Jessenius Faculty of Medicine of Comenius University in Bratislava and University Hospital in Martin, Slovakia

Received August 2024
Accepted January 2025

References

1. Abed, S. H., Oghenemaro, E. F., Kubaev, A. et al. (2024) Non-coding RNAs as a critical player in the regulation of inflammasome in inflammatory bowel diseases; emphasize on lncRNAs. Cell Biochem. Biophys. Online ahead of print. <https://doi.org/10.1007/s12013-024-01585-2>
2. Alexander, K. L., Zhao, Q., Reif, M. et al. (2021) Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology 611, 522-535.e6. <https://doi.org/10.1053/j.gastro.2021.03.064>
3. Alghoul, Z., Yang, C., Merlin, D. (2022) The current status of molecular biomarkers for inflammatory bowel disease. Biomedicines 10, 1492. <https://doi.org/10.3390/biomedicines10071492>
4. Andersson, K., Sletten, K. B., Berntzen, H. B. et al. (1988) The leucocyte Ll protein: identity with the cystic fibrosis antigen and the calcium-binding MRP-8 and MRP-14 macrophage components. Scand. J. Immunol. 28, 241-245. <https://doi.org/10.1111/j.1365-3083.1988.tb02437.x>
5. Andrés Cerezo, L., Mann, H., Pecha, O. et al. (2011) Decreases in serum levels of S100A8/9 (calprotectin) correlate with improvements in total swollen joint count in patients with recent-onset rheumatoid arthritis. Arthritis Res. Ther. 13, R122. <https://doi.org/10.1186/ar3426>
6. Azab, N., Talkhan, H., Samaha, D. et al. (2022) Serum calprotectin: a promising biomarker for inflammatory bowel disease (IBD). Int. J. Med. Arts 4, 2017-2025.
7. Bernardo, T. Di, Haccourt, A., Veyrard, P. et al. (2019) P279 interest of serum calprotectin in inflammatory bowel disease (IBD): a prospective monocentric study. J. Crohns Colitis 13(Suppl. 1), S238. <https://doi.org/10.1093/ecco-jcc/jjy222.403>
8. Beyaz, A. E., Akbal, E. (2022) Increased serum nesfatin-1 levels in patients with inflammatory bowel diseases. Postgrad. Med. J. 98, 446-449. <https://doi.org/10.1136/postgradmedj-2020-139227>
9. Bourgonje, A. R., Gabriëls, R. Y., De Borst, M. H. et al. (2019a) Serum free thiols are superior to fecal calprotectin in reflecting endoscopic disease activity in inflammatory bowel disease. Antioxidants (Basel) 8, 351. <https://doi.org/10.3390/antiox8090351>
10. Bourgonje, A. R., von Martels, J. Z. H., Gabriëls, R. Y. et al. (2019b) A combined set of four serum inflammatory biomarkers reliably predicts endoscopic disease activity in inflammatory bowel disease. Front. Med. (Lausanne) 6, 251. <https://doi.org/10.3389/fmed.2019.00251>
11. Brnić, D., Martinovic, D., Zivkovic, P. M. et al. (2020) Serum adropin levels are reduced in patients with inflammatory bowel diseases. Sci. Rep. 10, 9264. <https://doi.org/10.1038/s41598-020-66254-9>
12. Carlsen, K., Malham, M., Hansen, L. F. et al. (2019) Serum calprotectin in adolescents with inflammatory bowel disease – a pilot investigation. J. Pediatr. Gastroenterol. Nutr. 68, 669-675. <https://doi.org/10.1097/MPG.0000000000002244>
13. Chen, P., Zhou, G., Lin, J. et al. (2020) Serum biomarkers for inflammatory bowel disease. Front. Med. (Lausanne) 7, 123. <https://doi.org/10.3389/fmed.2020.00123>
14. Chen, R. D., Hu, Y. Y., Chen, Q. et al. (2021) Research paper association between serum calprotectin expression and disease activity in patients with inflammatory bowel disease. Ind. J. Pharm. Sci. 83, 12-17.
15. Cibor, D., Szczeklik, K., Brzozowski, B. et al. (2019) Serum galectin 3, galectin 9 and galectin 3-binding proteins in patients with active and inactive inflammatory bowel disease. J. Physiol. Pharmacol. 70. 2019.1.06 <https://doi.org/10.26402/jpp.2019.1.06>
16. Colombel, J. F., D’Haens, G., Lee, W. J. et al. (2020) Outcomes and strategies to support a treat-to-target approach in inflammatory bowel disease: a systematic review. J. Crohns Colitis 14, 254-266. <https://doi.org/10.1093/ecco-jcc/jjz131>
17. Colombel, J. F., Panaccione, R., Bossuyt, P. et al. (2017) Effect of tight control management on Crohn’s disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet 390, 2779-2789. <https://doi.org/10.1016/S0140-6736(17)32641-7>
18. Coorevits, L., Baert, F. J., Vanpoucke, H. J. M. (2013) Faecal calprotectin: comparative study of the quantum blue rapid test and an established ELISA method. Clin. Chem. Lab. Med. 51, 825-831. <https://doi.org/10.1515/cclm-2012-0386>
19. D’Amico, F., Rubin, D. T., Kotze, P. G. et al. (2021) International consensus on methodological issues in standardization of fecal calprotectin measurement in inflammatory bowel diseases. United European Gastroenterol. J. 9, 451-460. <https://doi.org/10.1002/ueg2.12069>
20. Diez-Martin, E., Hernandez-Suarez, L., Muñoz-Villafranca, C. et al. (2024) Inflammatory bowel disease: a comprehensive analysis of molecular bases, predictive biomarkers, diagnostic methods, and therapeutic options. Int. J. Mol. Sci. 25, 7062. <https://doi.org/10.3390/ijms25137062>
21. Ďuricová, D., Pfeiferová, M., Bortlík, M. et al. (2018) Kvalita života pacientů s idiopatickými střevními záněty v České republice – Multicentrická studie (Quality of life of idiopathic bowel inflammation patients in the Czech Republic). Gastroent. Hepatol. 72, 11-19 (in Czech). <https://doi.org/10.14735/amgh201811>
22. Ehlers, L., Rolfes, E., Lieber, M. et al. (2023) Treat-to-target strategies for the management of familial Mediterranean fever in children. Pediatr. Rheumatol. Online J. 21, 108. <https://doi.org/10.1186/s12969-023-00875-y>
23. El Nakeeb, N., Samir Elbaz, H., Rasmy, H. et al. (2023) The role of serum calgranulin C as a non-invasive marker for in­flammatory bowel disease. QJM 116(Suppl. 1), hcad069.458. <https://doi.org/10.1093/qjmed/hcad069.458>
24. Elshayeb, E. I., Moustafa A. E., Helwa, M. A. et al. (2021) Serum calprotectin level: is it a novel diagnostic biomarker for chronic inflammatory bowel diseases? Menoufia Med. J. 34, 768-773.
25. Ferrer, C. S., Barno, M. A., Arranz, E. M. et al. (2019) The use of serum calprotectin as a biomarker for inflammatory activity in inflammatory bowel disease. Rev. Esp. Enferm. Dig. 111, 744-749.
26. Fukunaga, S., Kuwaki, K., Mitsuyama, K. et al. (2018) Detection of calprotectin in inflammatory bowel disease: fecal and serum levels and immunohistochemical localization. Int. J. Mol. Med. 41, 107-118.
27. García-Arias, M., Pascual-Salcedo, D., Ramiro, S. et al. (2013) Calprotectin in rheumatoid arthritis: association with disease activity in a cross-sectional and a longitudinal cohort. Mol. Diagn. Ther. 17, 49-56. <https://doi.org/10.1007/s40291-013-0016-9>
28. Guo, X., Huang, C., Xu, J. et al. (2022) Gut microbiota is a potential biomarker in inflammatory bowel disease. Front. Nutr. 8, 818902. <https://doi.org/10.3389/fnut.2021.818902>
29. Ha, Y. J., Kang, E. J., Lee, S. W. et al. (2014) Usefulness of serum leucine-rich alpha-2 glycoprotein as a disease activity biomarker in patients with rheumatoid arthritis. J. Korean Med. Sci. 29, 1199-1204. <https://doi.org/10.3346/jkms.2014.29.9.1199>
30. Hejl, J., Theede, K., Mřllgren, B. et al. (2018) Point of care testing of fecal calprotectin as a substitute for routine laboratory analysis. Pract. Lab. Med. 10, 10-14. <https://doi.org/10.1016/j.plabm.2017.11.002>
31. Hlavatý, T., Krajčovičova, A., Zakuciová, M. et al. (2017) Odporúčania pracovnej skupiny pre IBD slovenskej gastroenterologickej spoločnosti pre liečbu ulceróznej kolitídy (Recommendation of the IBD Working Group of the Slovak Gastroenterology Association for ulcerative colitis treatment). Gastroent. Hepatol. 71, 229-240 (in Slovak). <https://doi.org/10.14735/amgh2017csgh.info05>
32. Hobbs, J. A. R., May, R., Tanousis, K. et al. (2003) Myeloid cell function in MRP-14 (S100A9) null mice. Mol. Cell. Biol. 23, 2564-2576. <https://doi.org/10.1128/MCB.23.7.2564-2576.2003>
33. Hurnakova, J., Hulejova, H., Zavada, J. et al. (2017) Relationship between serum calprotectin (S100A8/9) and clinical, laboratory and ultrasound parameters of disease activity in rheumatoid arthritis: a large cohort study. PLoS One 12, e0183420. <https://doi.org/10.1371/journal.pone.0183420>
34. Ichikawa, M., Williams, R., Wang, L. et al. (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol. Cancer Res. 9, 133-148. <https://doi.org/10.1158/1541-7786.MCR-10-0394>
35. Jagannath, B., Lin, K. C., Pali, M. et al. (2020) A sweat-based wearable enabling technology for real-time monitoring of IL-1β and CRP as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis. 26, 1533-1542. <https://doi.org/10.1093/ibd/izaa191>
36. Jere, M., Garrick, V., Curtis, L. et al. (2021) Point-of-care faecal calprotectin testing in patients with paediatric inflammatory bowel disease during the COVID-19 pandemic. BMJ Open Gastroenterol. 8, e000631. <https://doi.org/10.1136/bmjgast-2021-000631>
37. Jiang, F., Wu, M., Li, R. (2023) The significance of long non-coding RNAs in the pathogenesis, diagnosis and treatment of inflammatory bowel disease. Precis. Clin. Med. 6, pbad031. <https://doi.org/10.1093/pcmedi/pbad031>
38. Jukic, A., Bakiri, L., Wagner, E. F. et al. (2021) Calprotectin: from biomarker to biological function. Gut 70, 1978-1988. <https://doi.org/10.1136/gutjnl-2021-324855>
39. Kawamoto, A., Takenaka, K., Hibiya, S. et al. (2022) Serum leucine-rich α2 glycoprotein: a novel biomarker for small bowel mucosal activity in Crohn’s disease. Clin. Gastroenterol. Hepatol. 20, e1196-e1200. <https://doi.org/10.1016/j.cgh.2021.06.036>
40. Kawamura, T., Yamamura, T., Nakamura, M. et al. (2023) Accuracy of serum leucine-rich alpha-2 glycoprotein in evalu­ating endoscopic disease activity in Crohn’s disease. Inflamm. Bowel Dis. 29, 245-253. <https://doi.org/10.1093/ibd/izac076>
41. Khaki-Khatibi, F., Qujeq, D., Kashifard, M. et al. (2020) Calprotectin in inflammatory bowel disease. Clin. Chim. Acta 510, 556-565. <https://doi.org/10.1016/j.cca.2020.08.025>
42. Kido, J., Hayashi, N., Kataoka, M. et al. (2005) Calprotectin expression in human monocytes: induction by Porphyromonas gingivalis lipopolysaccharide, tumor necrosis factor-α, and interleukin-1β. J. Periodontol. 76, 437-442. <https://doi.org/10.1902/jop.2005.76.3.437>
43. Koller, T., Tóth, J., Hlavatý, T. et al. (2018) Odporúčania pracovnej skupiny pre IBD Slovenskej gastroenterologickej spoločnosti pre liečbu Crohnovej choroby(Recommendation of the IBD Working Group of the Slovak Gastroenterology Association for Crohn’s disease treatment). Gastroent. Hepatol. 72, 27-40 (in Slovak). <https://doi.org/10.14735/amgh201827>
44. Le Berre, C., Danese, S., Peyrin-Biroulet, L. (2023) Can we change the natural course of inflammatory bowel disease? Therap. Adv. Gastroenterol. 16, 76-94. <https://doi.org/10.1177/17562848231163118>
45. Levine, J. S., Burakoff, R. (2011) Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.) 7, 235-241.
46. Lewis, J. D. (2011) The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology 140, 1817-1826.e2. <https://doi.org/10.1053/j.gastro.2010.11.058>
47. Lindholm, M., Godskesen, L. E., Manon-Jensen, T. et al. (2021) Endotrophin and C6Ma3, serological biomarkers of type VI collagen remodelling, reflect endoscopic and clinical disease activity in IBD. Sci. Rep. 11, 14713. <https://doi.org/10.1038/s41598-021-94321-2>
48. Liu, Y., Zhan, L., Qin, Z. et al. (2021) Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15, 3593-3611. <https://doi.org/10.1021/acsnano.0c10035>
49. Lukáš, M. (2021) Treating inflammatory bowel diseases in the 21st century: individualized therapy and telemedicine. Vnit. Lek. 67, 201-205 (in Czech). <https://doi.org/10.36290/vnl.2021.053>
50. Ma, L., Sun, P., Zhang, J. C., Zhang, Q. et al. (2017) Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int. J. Mol. Med. 40, 31-38. <https://doi.org/10.3892/ijmm.2017.2987>
51. Maaser, C., Sturm, A., Vavricka, S. R. et al. (2019) ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 13, 144-164. <https://doi.org/10.1093/ecco-jcc/jjy113>
52. Malham, M., Carlsen, K., Riis, L. et al. (2019) Plasma calprotectin is superior to serum calprotectin as a biomarker of intestinal inflammation in ulcerative colitis. Scand. J. Gastroenterol. 54, 1214-1219. <https://doi.org/10.1080/00365521.2019.1665097>
53. Malíčková, K., Pešinová, V., Kolář, M. et al. (2019) POCT systém detekce hladin fekálního kalprotektinu při telemonitoringu pacientů s idiopatickými střevními záněty (POCT system of detection of faecal calprotectin during telemonitoring of idiopathic bowel inflammation patients). Klin. Biochem. Metab. 27, 72-77 (in Czech).
54. Mao, R., Xiao, Y. L., Gao, X. et al. (2012) Fecal calprotectin in predicting relapse of inflammatory bowel diseases: a meta-analysis of prospective studies. Inflamm. Bowel Dis. 18, 1894-1899. <https://doi.org/10.1002/ibd.22861>
55. Meuwis, M. A., Vernier-Massouille, G., Grimaud, J. C. et al. (2013) Serum calprotectin as a biomarker for Crohn’s disease. J. Crohns Colitis 7, 678-683. <https://doi.org/10.1016/j.crohns.2013.06.008>
56. Mitsuyama, K., Niwa, M., Takedatsu, H. et al. (2016) Antibody markers in the diagnosis of inflammatory bowel disease. World J. Gastroenterol. 22, 1304-1310. <https://doi.org/10.3748/wjg.v22.i3.1304>
57. Mori, A., Mitsuyama, K., Sakemi, R. et al. (2021) Evaluation of serum calprotectin levels in patients with inflammatory bowel disease. Kurume Med. J. 66, 209-215. <https://doi.org/10.2739/kurumemedj.MS664009>
58. Narumi, K., Miyakawa, R., Ueda, R. et al. (2015) Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J. Immunol. 194, 5539-5548. <https://doi.org/10.4049/jimmunol.1402301>
59. Nielsen, O. H., Ahnfelt-Rřnne, I., Elmgreen, J. (1987) Abnormal metabolism of arachidonic acid in chronic inflammatory bowel disease: enhanced release of leucotriene B4 from activated neutrophils. Gut 28, 181-185. <https://doi.org/10.1136/gut.28.2.181>
60. Nilsen, T., Sunde, K., Larsson, A. (2015) A new turbidimetric immunoassay for serum calprotectin for fully automatized clinical analysers. J. Inflamm. (Lond.) 12, 45. <https://doi.org/10.1186/s12950-015-0090-3>
61. Okada, K., Itoh, H., Ikemoto, M. (2021) Serum complement C3 and α2-macroglobulin are potentially useful biomarkers for inflammatory bowel disease patients. Heliyon 7, e06554. <https://doi.org/10.1016/j.heliyon.2021.e06554>
62. Okada, K., Okabe, M., Kimura, Y. et al. (2019) Serum S100A8/A9 as a potentially sensitive biomarker for inflammatory bowel disease. Lab. Med. 50, 370-380. <https://doi.org/10.1093/labmed/lmz003>
63. Ortega Moreno, L., Sanz-Garcia, A., Fernández de la Fuente, M. J. et al. (2020) Serum adipokines as non-invasive biomarkers in Crohn’s disease. Sci. Rep. 10, 18027. <https://doi.org/10.1038/s41598-020-74999-6>
64. Park, C., Miranda-Garcia, M., Berendes, R. et al. (2022) MRP8/14 serum levels as diagnostic markers for systemic juvenile idiopathic arthritis in children with prolonged fever. Rheumatology (Oxford) 61, 3082-3092. <https://doi.org/10.1093/rheumatology/keab729>
65. Patel, A., Panchal, H., Dubinsky, M. C. (2017) Fecal calprotectin levels predict histological healing in ulcerative colitis. Inflamm. Bowel Dis. 23, 1600-1604. <https://doi.org/10.1097/MIB.0000000000001157>
66. Pehrsson, M., Domislovic, V., Alexdottir, M. S. et al. (2023) Blood-based biomarkers reflecting protease 3 and MMP-12 catalyzed elastin degradation as potential noninvasive surrogate markers of endoscopic and clinical disease in inflammatory bowel disease. J. Clin. Med. 13, 21. <https://doi.org/10.3390/jcm13010021>
67. Plevris, N., Lees, C. W. (2022) Disease monitoring in inflammatory bowel disease: evolving principles and possibilities. Gastroenterology 162, 1456-1475.e1. <https://doi.org/10.1053/j.gastro.2022.01.024>
68. Reese, G. E., Constantinides, V. A., Simillis, C. et al. (2006) Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am. J. Gastroenterol. 101, 2410-2422. <https://doi.org/10.1111/j.1572-0241.2006.00840.x>
69. Reinisch, W., Panaccione, R., Bossuyt, P. et al. (2020) Association of biomarker cutoffs and endoscopic outcomes in Crohn’s disease: a post hoc analysis from the CALM study. Inflamm. Bowel Dis. 26, 1562-1571. <https://doi.org/10.1093/ibd/izaa025>
70. Ruemmele, F. M., Targan, S. R., Levy, G. et al. (1998) Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology 115, 822-829. <https://doi.org/10.1016/S0016-5085(98)70252-5>
71. Ryter, N., Szentpetery, A., Pennington, S. et al. (2017) Rapid determination of the inflammation marker calprotectin in serum from patients with inflammatory arthritis at the point of care. Ann. Rheum. Dis. 76 (Suppl. 2), 465. <https://doi.org/10.1136/annrheumdis-2017-eular.4722>
72. Sakurai, T., Saruta, M. (2023) Positioning and usefulness of biomarkers in inflammatory bowel disease. Digestion 104, 30-41. <https://doi.org/10.1159/000527846>
73. Sellin, J. H., Shah, R. R. (2012) The promise and pitfalls of serologic testing in inflammatory bowel disease. Gastroenterol. Clin. North Am. 41, 463-482. <https://doi.org/10.1016/j.gtc.2012.01.001>
74. Shaker, O. G., Safa, A., Khairy, A. et al. (2023) Serum long noncoding RNA H19/microRNA-675-5p axis as a probable diagnostic biomarker in inflammatory bowel disease. Mol. Biol. Rep. 50, 9029-9036. <https://doi.org/10.1007/s11033-023-08777-8>
75. Shao, X., Yang, L., Hu, K. et al. (2020) Serum cholinesterases, a novel marker of clinical activity in inflammatory bowel disease: a retrospective case-control study. Mediators Inflamm. 2020, 4694090.
76. Shimoyama, T., Yamamoto, T., Yoshiyama, S. et al. (2023) Leucine-rich alpha-2 glycoprotein is a reliable serum biomarker for evaluating clinical and endoscopic disease activity in inflammatory bowel disease. Inflamm. Bowel Dis. 29, 1399-1408. <https://doi.org/10.1093/ibd/izac230>
77. Shinozaki, E., Tanabe, K., Akiyoshi, T. et al. (2018) Serum leucine-rich alpha-2-glycoprotein-1 with fucosylated triantennary N-glycan: a novel colorectal cancer marker. BMC Cancer 18, 406. <https://doi.org/10.1186/s12885-018-4252-6>
78. Shinzaki, S., Matsuoka, K., Tanaka, H. et al. (2021) Leucine-rich alpha-2 glycoprotein is a potential biomarker to monitor disease activity in inflammatory bowel disease receiving adalimumab: PLANET study. J. Gastroenterol. 56, 560-569. <https://doi.org/10.1007/s00535-021-01793-0>
79. Sohnle, P. G., Hunter, M. J., Hahn, B. et al. (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J. Infect. Dis. 182, 1272-1275. <https://doi.org/10.1086/315810>
80. Strohalmová, S., Levová, K., Kuběna, A. A. et al. (2023) Alarmins and related molecules in elective surgery. Folia Biol. (Praha) 69, 50-58. <https://doi.org/10.14712/fb2023069020050>
81. Stute, M., Kreysing, M., Zorn, M. et al. (2023) Serum amyloid A as a biomarker in inflammatory bowel diseases. Int. J. Mol. Sci. Online: 18 December 2023, <https://doi.org/10.20944/preprints202312.1225.v1>
82. Szymanska, E., Szymanska, S., Dadalski, M. et al. (2023) Biological markers of disease activity in inflammatory bowel diseases. Prz. Gastroenterol. 18, 141-147.
83. Targan, S. R., Landers, C. J., Yang, H. et al. (2005) Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 128, 2020-2028. <https://doi.org/10.1053/j.gastro.2005.03.046>
84. Tomaszewski, M., Sanders, D., Enns, R. et al. (2021) Risks associated with colonoscopy in a population-based colon screening program: an observational cohort study. CMAJ Open 9, E940-E947. <https://doi.org/10.9778/cmajo.20200192>
85. Townsend, S., Udegbune, M., Molyneux, R. et al. (2019) The efficacy of two commercially available serum calprotectin assays to assess disease activity in IBD. Gut 68 (Suppl. 2), A100.1-A100.
86. Turner, D., Ricciuto, A., Lewis, A. et al. (2021) STRIDE-II: an update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology 160, 1570-1583. <https://doi.org/10.1053/j.gastro.2020.12.031>
87. Udegbune, M., Sharrod–Cole, H., Townsend, S. et al. (2022) Diagnostic performance of serum calprotectin in discriminating active from inactive ulcerative colitis in an outpatient setting. Ann. Clin. Biochem. 59, 404-409. <https://doi.org/10.1177/00045632221116830>
88. Ungaro, R., Colombel, J. F., Lissoos, T. et al. (2019) A treat-to-target update in ulcerative colitis: a systematic review. Am. J. Gastroenterol. 114, 874-883. <https://doi.org/10.14309/ajg.0000000000000183>
89. Ungaro, R. C., Yzet, C., Bossuyt, P. et al. (2020) Deep remission at 1 year prevents progression of early Crohn’s disease. Gastroenterology 159, 139-147. <https://doi.org/10.1053/j.gastro.2020.03.039>
90. Veyrard, P., Roblin, X., Pansart, C. et al. (2022) Serum calprotectin is useful to confirm inflammatory bowel disease activity but not to predict relapse. Clin. Immunol. Commun. 2, 33-38. <https://doi.org/10.1016/j.clicom.2022.02.001>
91. Vogl, T., Ludwig, S., Goebeler, M. et al. (2004) MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood 104, 4260-4268. <https://doi.org/10.1182/blood-2004-02-0446>
92. Walsh, A., Kormilitzin, A., Hinds, C. et al. (2019) Defining faecal calprotectin thresholds as a surrogate for endoscopic and histological disease activity in ulcerative colitis – a prospective analysis. J. Crohns Colitis 13, 424-430. <https://doi.org/10.1093/ecco-jcc/jjy184>
93. Weinstein-Nakar, I., Focht, G., Church, P. et al. (2018) Associations among mucosal and transmural healing and fecal level of calprotectin in children with Crohn’s disease. Clin. Gastroenterol. Hepatol. 16, 1089-1097.e4. <https://doi.org/10.1016/j.cgh.2018.01.024>
94. Yamamoto, M., Takahashi, T., Serada, S. et al. (2017) Overexpression of leucine-rich α2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer. Cancer Sci. 108, 2052-2060. <https://doi.org/10.1111/cas.13329>
95. Yasuda, R., Arai, K., Kudo, T. et al. (2023) Serum leucine-rich alpha-2 glycoprotein and calprotectin in children with inflammatory bowel disease: a multicenter study in Japan. J. Gastroenterol. Hepatol. 38, 1131-1139. <https://doi.org/10.1111/jgh.16166>
96. Yasutomi, E., Inokuchi, T., Hiraoka, S. et al. (2021) Leucine-rich alpha-2 glycoprotein as a marker of mucosal healing in inflammatory bowel disease. Sci. Rep. 11, 11086. <https://doi.org/10.1038/s41598-021-90441-x>
97. Yoshimura, T., Mitsuyama, K., Sakemi, R. et al. (2021) Evaluation of serum leucine-rich alpha-2 glycoprotein as a new inflammatory biomarker of inflammatory bowel disease. Mediators Inflamm. 2021, 8825374. <https://doi.org/10.1155/2021/8825374>
98. Zhang, X., Wang, S., Wang, H. et al. (2022) Serum homocysteine level was elevated in ulcerative colitis and can be applied as diagnostic biomarker. Pteridines 33, 87-93. <https://doi.org/10.1515/pteridines-2022-0046>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive