Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2024, 70, 274-284

https://doi.org/10.14712/fb2024070050274

Genetic Predisposition to Male Breast Cancer

Markéta Janatová1,2ID, Marianna Borecká1,2, Petra Zemánková1,2,3, Kateřina Matějková2,4, Petr Nehasil1,2,3,5, Leona Černá1,6, Marta Černá1,2, Petra Dušková1,7, Taťána Doležalová2, Lenka Foretová1,8, Ondřej Havránek1,10,9, Jana Házová1,8, Klára Horáčková1,2, Milena Hovhannisyan1,2, Lucie Hrušková1,11, Štěpán Chvojka1,6, Mária Janíková1,12, Marta Kalousová2, Marcela Kosařová1,13, Monika Koudová1,6, Veronika Krhutová14, Veronika Krulišová1,11, Eva Macháčková1,8, Renáta Michalovská1,11, Barbora Němcová2, Jan Novotný1,10, Markéta Šafaříková2, Barbora Šťastná1,15,2, Viktor Stránecký1,5, Ivan Šubrt1,16, Spiros Tavandzis1,14, Zdeňka Vlčková1,11, Michal Vočka1,10,17, Radek Vrtěl1,12, Tomáš Zima2, Jana Soukupová1,2, Petra Kleiblová1,10,2, Zdeněk Kleibl1,2,3

1CZECANCA consortium, Czech Republic
2Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
3Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
4Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
5Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
6Centre for Medical Genetics and Reproductive Medicine, GENNET, Prague, Czech Republic
7Laboratory of Molecular Biology and Genetics, Hospital Ceske Budejovice, Ceske Budejovice, Czech Republic
8Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
9BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
10Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
11GHC Genetics, Prague, Czech Republic
12Department of Medical Genetics, Faculty of Medicine and Dentistry, University Hospital Olomouc, Palacky University Olomouc, Olomouc, Czech Republic
13Department of Medical Genetics, PRONATAL Sanatorium, Prague, Czech Republic
14Department of Medical Genetics, AGEL Laboratories, AGEL Research and Training Institute, Novy Jicin, Czech Republic
15Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
16Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
17Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague,

Received December 2024
Accepted January 2025

References

1. Al Saati, A., Vande Perre, P., Plenecassagnes, J. et al. (2023) Multigene panel sequencing identifies a novel germline mutation profile in male breast cancer patients. Int. J. Mol. Sci. 24, 14348. <https://doi.org/10.3390/ijms241814348>
2. Bielcikova, Z., Holanek, M., Selingerova, I. et al. (2024) Treatment and prognosis of male breast cancer: a multicentric, retrospective study over 11 years in the Czech Republic. Oncologist 29, e750-e762. <https://doi.org/10.1093/oncolo/oyae031>
3. Bucalo, A., Conti, G., Valentini, V. et al. (2023) Male breast cancer risk associated with pathogenic variants in genes other than BRCA1/2: an Italian case-control study. Eur. J. Cancer 188, 183-191. <https://doi.org/10.1016/j.ejca.2023.04.022>
4. Campos, F. A. B., Rouleau, E., Torrezan, G. T. et al. (2021) Genetic landscape of male breast cancer. Cancers (Basel) 13, 3535. <https://doi.org/10.3390/cancers13143535>
5. DiGiovanna, J. J., Kraemer, K. H. (2012) Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132 (3 Pt 2), 785-796. <https://doi.org/10.1038/jid.2011.426>
6. Dorling, L., Carvalho, S., Allen, J. et al. (2021) Breast cancer risk genes – association analysis in more than 113,000 women. N. Engl. J. Med. 384, 428-439.
7. Erkko, H., Pylkäs, K., Karppinen, S. M. et al. (2008) Germline alterations in the CLSPN gene in breast cancer families. Cancer Lett. 261, 93-97. <https://doi.org/10.1016/j.canlet.2007.11.003>
8. Evans, D. G., Burghel, G. J., Howell, S. J. et al. (2024) Pathogenic variant detection rate varies considerably in male breast cancer families and sporadic cases: minimal additional contribution beyond BRCA2, BRCA1 and CHEK2. J. Med. Genet. 61, 853-855. <https://doi.org/10.1136/jmg-2023-109826>
9. Fostira, F., Saloustros, E., Apostolou, P. et al. (2018) Germline deleterious mutations in genes other than BRCA2 are infrequent in male breast cancer. Breast Cancer Res. Treat. 169, 105-113. <https://doi.org/10.1007/s10549-018-4661-x>
10. Gargiulo, P., Pensabene, M., Milano, M. et al. (2016) Long-term survival and BRCA status in male breast cancer: a retrospective single-center analysis. BMC Cancer 16, 375. <https://doi.org/10.1186/s12885-016-2414-y>
11. Guzmán-Arocho, Y. D., Rosenberg, S. M., Garber, J. E. et al. (2022) Clinicopathological features and BRCA1 and BRCA2 mutation status in a prospective cohort of young women with breast cancer. Br. J. Cancer 126, 302-309. <https://doi.org/10.1038/s41416-021-01597-2>
12. Hassanin, E., May, P., Aldisi, R. et al. (2022) Breast and prostate cancer risk: the interplay of polygenic risk, rare pathogenic germline variants, and family history. Genet. Med. 24, 576-585. <https://doi.org/10.1016/j.gim.2021.11.009>
13. Horackova, K., Zemankova, P., Nehasil, P. et al. (2024) A comprehensive analysis of germline predisposition to early-onset ovarian cancer. Sci. Rep. 14, 16183. <https://doi.org/10.1038/s41598-024-66324-2>
14. Hu, C., Hart, S. N., Gnanaolivu, R. et al. (2021) A population-based study of genes previously implicated in breast cancer. N. Engl. J. Med. 384, 440-451. <https://doi.org/10.1056/NEJMoa2005936>
15. Janatová, M., Chvojka, Š., Macháčková, E. et al. (2023) Classification of germline variants identified in cancer predisposition genetic testing – consensus of the CZECANCA consortium. Klin. Onkol. 37, 431-439.
16. Khan, N. A. J., Tirona, M. (2021) An updated review of epidemiology, risk factors, and management of male breast cancer. Med. Oncol. 38, 39. <https://doi.org/10.1007/s12032-021-01486-x>
17. Kleibl, Z., Novotny, J., Bezdickova, D. et al. (2005) The CHEK2 c.1100delC germline mutation rarely contributes to breast cancer development in the Czech Republic. Breast Cancer Res. Treat. 90, 165-167. <https://doi.org/10.1007/s10549-004-4023-8>
18. Kleiblová, P., Černá, M., Zemánková, P. et al. (2024a) Parallel DNA/RNA NGS using an identical target enrichment panel in the analysis of hereditary cancer predisposition. Folia Biol. (Praha) 70, 62-73. <https://doi.org/10.14712/fb2024070010062>
19. Kleiblová, P., Novotný, J., Cibula, D. et al. (2024b) The guidelines for clinical practice for carriers of germline mutations in hereditary breast, ovarian, prostate, and pancreatic cancer predisposition genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 (4.2024). Klin. Onkol. 38, 292-299.
20. Kleiblova, P., Stolarova, L., Krizova, K. et al. (2019) Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int. J. Cancer 145, 1782-1797. <https://doi.org/10.1002/ijc.32385>
21. Kluźniak, W., Wokołorczyk, D., Rusak, B. et al. (2019) Inherited variants in BLM and the risk and clinical characteristics of breast cancer. Cancers (Basel) 11, 1548. <https://doi.org/10.3390/cancers11101548>
22. Kral, J., Jelinkova, S., Zemankova, P. et al. (2023) Germline multigene panel testing of patients with endometrial cancer. Oncol. Lett. 25, 216. <https://doi.org/10.3892/ol.2023.13802>
23. Li, S., Silvestri, V., Leslie, G. et al. (2022) Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. J. Clin. Oncol. 40, 1529-1541. <https://doi.org/10.1200/JCO.21.02112>
24. Machackova, E., Claes, K., Mikova, M. et al. (2019) Twenty years of BRCA1 and BRCA2 molecular analysis at MMCI – current developments for the classification of variants. Klin. Onkol. 32 (Suppl. 2), 51-71. <https://doi.org/10.14735/amko2019S51>
25. Maguire, S., Perraki, E., Tomczyk, K. et al. (2021) Common susceptibility loci for male breast cancer. J. Natl. Cancer Inst. 113, 453-461. <https://doi.org/10.1093/jnci/djaa101>
26. Martins, D. J., Di Lazzaro Filho, R., Bertola, D. R. et al. (2023) Rothmund-Thomson syndrome, a disorder far from solved. Front. Aging 4, 1296409. <https://doi.org/10.3389/fragi.2023.1296409>
27. Mukherjee, A. G., Gopalakrishnan, A. V., Jayaraj, R. et al. (2023) The incidence of male breast cancer: from fiction to reality – correspondence. Int. J. Surg. 109, 2855-2858. <https://doi.org/10.1097/JS9.0000000000000126>
28. Pensabene, M., Von Arx, C., De Laurentiis, M. (2022) Male breast cancer: from molecular genetics to clinical management. Cancers (Basel) 14, 206. <https://doi.org/10.3390/cancers14082006>
29. Pohlreich, P., Zikan, M., Stribrna, J. et al. (2005) High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area. Breast Cancer Res. 7, R728-R736.
30. Pritzlaff, M., Summerour, P., McFarland, R. et al. (2017) Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Res. Treat. 161, 575-586. <https://doi.org/10.1007/s10549-016-4085-4>
31. Richards, S., Aziz, N., Bale, S. et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-424. <https://doi.org/10.1038/gim.2015.30>
32. Rizzolo, P., Silvestri, V., Tommasi, S. et al. (2013) Male breast cancer: genetics, epigenetics, and ethical aspects. Ann. Oncol. 24 (Suppl. 8), viii75-viii82. <https://doi.org/10.1093/annonc/mdt316>
33. Rolfes, M., Borde, J., Möllenhoff, K. et al. (2022) Prevalence of cancer predisposition germline variants in male breast cancer patients: results of the German Consortium for Here­ditary Breast and Ovarian Cancer. Cancers (Basel) 14, 3292. <https://doi.org/10.3390/cancers14133292>
34. Rump, A., Benet-Pages, A., Schubert, S. et al. (2016) Identification and functional testing of ERCC2 mutations in a multi-national cohort of patients with familial breast- and ovarian cancer. PLoS Genet. 12, e1006248. <https://doi.org/10.1371/journal.pgen.1006248>
35. Scarpitta, R., Zanna, I., Aretini, P. et al. (2019) Germline investigation in male breast cancer of DNA repair genes by next-generation sequencing. Breast Cancer Res. Treat. 178, 557-564. <https://doi.org/10.1007/s10549-019-05429-z>
36. Soukupova, J., Zemankova, P., Kleiblova, P. et al. (2016) CZECANCA: CZEch CAncer paNel for Clinical Application – design and optimization of the targeted sequencing panel for the identification of cancer susceptibility in high-risk individuals from the Czech Republic. Klin. Onkol. 29 (Suppl. 1), S46-S54 (In Czech). <https://doi.org/10.14735/amko2016S46>
37. Soukupova, J., Zemankova, P., Lhotova, K. et al. (2018) Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS One 13, e0195761. <https://doi.org/10.1371/journal.pone.0195761>
38. Stastna, B., Dolezalova, T., Matejkova, K. et al. (2024) Germline pathogenic variants in the MRE11, RAD50, and NBN (MRN) genes in cancer predisposition: a systematic review and meta-analysis. Int. J. Cancer 155, 1604-1615. <https://doi.org/10.1002/ijc.35066>
39. Stolarova, L., Kleiblova, P., Janatova, M. et al. (2020) CHEK2 germline variants in cancer predisposition: stalemate rather than checkmate. Cells 9, 2675. <https://doi.org/10.3390/cells9122675>
40. Stolarova, L., Kleiblova, P., Zemankova, P. et al. (2023) ENIGMA CHEK2gether project: a comprehensive study identifies functionally impaired CHEK2 germline missense variants associated with increased breast cancer risk. Clin. Cancer Res. 29, 3037-3050. <https://doi.org/10.1158/1078-0432.CCR-23-0212>
41. Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D. et al. (2005) Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J. Natl. Cancer Inst. 97, 1204-1210. <https://doi.org/10.1093/jnci/dji240>
42. Tedaldi, G., Tebaldi, M., Zampiga, V. et al. (2020) Male breast cancer: results of the application of multigene panel testing to an Italian cohort of patients. Diagnostics (Basel) 10, 269. <https://doi.org/10.3390/diagnostics10050269>
43. Valentini, V., Bucalo, A., Conti, G. et al. (2024) Gender-specific genetic predisposition to breast cancer: BRCA genes and beyond. Cancers (Basel) 16, 579. <https://doi.org/10.3390/cancers16030579>
44. Vocka, M., Zimovjanova, M., Bielcikova, Z. et al. (2019) Estrogen receptor status oppositely modifies breast cancer prognosis in BRCA1/BRCA2 mutation carriers versus non-carriers. Cancers (Basel) 11, 738. <https://doi.org/10.3390/cancers11060738>
45. Yang, X., Leslie, G., Doroszuk, A. et al. (2020) Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J. Clin. Oncol. 38, 674-685. <https://doi.org/10.1200/JCO.19.01907>
46. Zemankova, P., Cerna, M., Horackova, K. et al. (2024) A deep intronic recurrent CHEK2 variant c.1009-118_1009-87delinsC affects pre-mRNA splicing and contributes to hereditary breast cancer predisposition. Breast 75, 103721. <https://doi.org/10.1016/j.breast.2024.103721>
47. Zheng, G., Leone, J. P. (2022) Male breast cancer: an updated review of epidemiology, clinicopathology, and treatment. J. Oncol. 2022, 1734049.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive